Proof that $2x^2 + 5x - 3$ is continuous in \mathbb{R}

Lukas Prokop

16th of February 2015, Update 28th of February 2016

1 Exercise

Prove (using Weierstrass' ϵ - δ -definition of continuity) that f is continuous in $\mathbb R$ where

$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto 2x^2 + 5x - 3$

2 Prerequisites

2.1 Triangle inequality

Let a_n be a finite sequence of real values, hence $a_n \in \mathbb{R} \ \forall 0 \leq n \leq r$ with $r < \infty$. Then it holds that

$$\left| \sum_{n=0}^{r} a_n \right| \le \sum_{n=0}^{r} |a_n|$$

3 Setting

So technically we need to prove

$$\forall x_0 \in \mathbb{R} \, \forall \varepsilon > 0 \, \exists \delta > 0 \, \forall x \in \mathbb{R} : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

4 Strategy

To prove this we want to find some δ general enough such that it can be used for all possible values of ε . It is important for those kind of exercises to respect quantifier order. Hence our very general δ is allowed to depend on x_0 , ε and (of course) any constants, but *not* x, because it must hold for arbitrary $x \in \mathbb{R}$ as can be read from the setting's expression.

5 $\delta < 1$

Assume that $\delta < 1$ and $|x - x_0| < \delta$. So

$$|x - x_0| < \delta \tag{1}$$

$$|x - x_0| < 1 \tag{2}$$

We can derive:

$$|x| = |x - x_0 + x_0| \tag{3}$$

$$\leq |x - x_0| + |x_0| \tag{4}$$

$$\leq \underbrace{1}_{\text{Inequality }2} + |x_0|$$
 (5)

6 Deriving a suitable δ

We will start with the right-hand side expression of our setting. We want to get rid of any x in this expression, because the resulting expression will be used as our general δ . This can be done very easily because of Inequality 2. Furthermore I point out that it is always possible to bring the resulting value closer to ε . So it is always fine to make the expression greater, but making it smaller is not allowed.

$$|2x^2 + 5x - 3 - 2x_0^2 - 5x_0 + 3| (6)$$

$$= |2x^2 + 5x - 2x_0^2 - 5x_0| \tag{7}$$

$$\leq 2|x|^2 + 5|x| - 2|x_0|^2 - 5|x_0|$$
 [Triangle ineq.] (8)

$$\leq 2(1 + |x_0|)^2 + 5(1 + |x_0|) - 2|x_0|^2 - 5|x_0|$$
 [Inequality 5] (9)

$$= 2(1 + 2 |x_0| + |x_0|^2) + 5 + 5 |x_0| - 2 |x_0|^2 - 5 |x_0|$$
(10)

$$= 2 + 4 |x_0| + 2 |x_0|^2 + 5 + 5 |x_0| - 2 |x_0|^2 - 5 |x_0|$$
(11)

$$= 2|x_0|^2 - 2|x_0|^2 + 4|x_0| + 5|x_0| - 5|x_0| + 2 + 5$$
(12)

$$= 4 |x_0| + 7 \tag{13}$$

7 Selecting δ

Choose $\delta := \min\left(1, \frac{\varepsilon}{4|x_0|+7}\right)$. Then it can be proved that any x and x_0 satisfies the equation given in the setting.

8 Proving correctness of δ

It is given that,

$$|x - x_0| < \min\left(1, \frac{\varepsilon}{4|x_0| + 7}\right)$$
 (14)

$$|x - x_0| (4 |x_0| + 7) < \min(4 |x_0| + 7, \varepsilon)$$
 (15)

Because the previous display holds and $\min(4 | x_0 | + 7, \varepsilon) \le \varepsilon$ it certainly holds that,

$$|x - x_0| (4|x_0| + 7) < \varepsilon \tag{16}$$

$$|x - x_0| |2x^2 + 5x - 3 - 2x_0^2 - 5x_0 + 3| < \varepsilon$$
 (17)

Because $|x - x_0| < 1$ it holds that,

$$\left| 2x^2 + 5x - 3 - 2x_0^2 - 5x_0 + 3 \right| < \varepsilon \tag{18}$$

$$|f(x) - f(x_0)| < \varepsilon \tag{19}$$

Our δ always satisfies $f(x) - f(x_0) < \varepsilon$ for all values of $x, x_0 \in \mathbb{R}$. So we have just proved its correctness.