
Constant time algorithms in PQC
https://lukas-prokop.at/talks/2022-01-26_rustgraz-const-time

Lukas Prokop
2022-01-27

RustGraz community

https://lukas-prokop.at/talks/2022-01-26_rustgraz-const-time


Introduction



Cryptography status-quo

$ nmap --script ssl-enum-ciphers -p 443 rust-lang.org
443/tcp open https
| ssl-enum-ciphers:
| TLSv1.1:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (ecdh_x25519) - A
| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) - A
| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) - A
| TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) - A
| compressors:
| NULL
| cipher preference: server
| TLSv1.2:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (ecdh_x25519) - A
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) - A
| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) - A
| TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) - A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
| compressors:
| NULL
| cipher preference: server
|_ least strength: A

1 Lukas Prokop | RustGraz community



Post-quantum cryptography (PQC)

Fact
Our current cryptographic infrastructure is built on top of RSA and elliptic cryptography.
Their security is based on the integer factorization (RSA) and discrete logarithm problem
(ECC).

Assumption
A sufficiently large quantum computer can solve integer factorization and the discrete
logarithm problem in polynomial time (c.f. Shor’s algorithm, Grover’s algorithm).

Assumption
No sufficiently large quantum computer exists, but we should protect current
communication against future decryption.

2 Lukas Prokop | RustGraz community



Post-quantum cryptography (PQC)

Research questions:

1. Which problems provide security under the QROMmodel?

2. Which cryptographic primitives do we need?

3. What are algorithmic candidates for cryptographic primitives?

4. Which algorithms can be implemented [securely and efficiently] in software and
hardware?

3 Lukas Prokop | RustGraz community



Post-quantum cryptography (PQC)

Basic answers:

problems Speculation. Ask theoretical computer scientists about the presumed
difficulty to solve computational problems.

primitives Symmetric cryptographic primitives can be used with doubled key sizes.
Asymmetric cryptographic primitives like public key encryption schemes
and digital signatures need to be replaced.

candidates Ask cryptographic community for proposals. Ask everyone to break
security.

implementation Ask for feedback within a time frame.

4 Lukas Prokop | RustGraz community



Post-quantum cryptography (PQC)

Initiate cryptograpic competition1 similar to SHA-3, CAESAR, and NISTLWC.

Competition by National Institute for Standards and Technology, USA (NIST)

2016-02 Announcement for “Post-Quantum Cryptography Standardization Effort”

2017-11 Deadline for submissions

2017-12 Round 1 algorithms announced (69)

2019-01 Round 2 algorithms announced (26)

2020-07 Round 3 algorithms announced (7)

2022-01 Schemes to standardize to be announced

2024 Expected end of standardization
1“Cryptographic competitions” by Daniel J. Bernstein (2020)

5 Lukas Prokop | RustGraz community

https://eprint.iacr.org/2020/1608.pdf


Post-quantum cryptography (PQC)

What are candidates for post-quantum cryptography NOT?

• New algorithms for symmetric algorithms

• Quantum cryptography: Industry won’t be able to deploy quantum co-processors
in the next few years.

Common approach:

1. Pick an NP-hard problem, where no advantage is known for quantum computers.

2. Design cryptographic scheme on top of the problem

3. Reiterate over implementations to improve efficiency and security

6 Lukas Prokop | RustGraz community



Cryptographic primitives

Key Encapsulation Mechanism:

1. KeyGen() → (pk, sk)

2. Encapsulate(pk) → (ct, ss)

3. Decapsulate(pk, sk, ct) → (ss)

Digital signatures:

1. KeyGen() → (pk, sk)

2. Sign(sk, msg) → (sig)

3. Verify(sig, msg, pk) → (msg)

7 Lukas Prokop | RustGraz community



PQC Round 3 finalists

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

8 Lukas Prokop | RustGraz community

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


PQC Round 3 finalists

Round 3 finalists:

1. Classic McEliece (KEM, code)
2. CRYSTALS-KYBER (KEM, lattice, MLWE)
3. NTRU (KEM, lattice, NTRU)
4. SABER (KEM, lattice, MLWR)
5. CRYSTALS-DILITHIUM (sig, lattice, Fiat-Shamir)
6. FALCON (sig, lattice, NTRU)
7. Rainbow (sig, multi-variate, Oil-Vinegar)

(Alternate candidates neglected)

General categories: lattice-based, code-based, multivariate, hash-based, braid group,
supersingular elliptic curve cryptography

9 Lukas Prokop | RustGraz community

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


Usecase



Security

Theoretical security choice of parameters

Software security timing, caches, memory management,
misuse prevention by API design

Hardware security EM emission, power analysis, fault attacks

10 Lukas Prokop | RustGraz community



Security

Theoretical security choice of parameters

Software security timing, caches, memory management,
misuse prevention by API design

Hardware security EM emission, power analysis, fault attacks

11 Lukas Prokop | RustGraz community



Constant time

• On our hardware, assembly instructions are run

• Independent of the values, the algorithm should take the same amount of time (i.e.
constant time)

• Classic counterexample: Exponentiation by squaring

• Sorry, most code snippets are in C

12 Lukas Prokop | RustGraz community

https://en.wikipedia.org/wiki/Exponentiation_by_squaring


Assembly in rust

Blog article “Intel’s RDTSC instruction with rust’s RFC-2873 asm! macro” (2021)

#![feature(asm)]

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn has_rdtsc_support() -> bool {

// Step 1: ask for generic information and print it to stdout
{

let ebx: u32;
let ecx: u32;
let edx: u32;

13 Lukas Prokop | RustGraz community

https://www.lukas-prokop.at/articles/2021-11-10-rdtsc-with-rust-asm


Assembly in rust

Blog article “Intel’s RDTSC instruction with rust’s RFC-2873 asm! macro” (2021)

unsafe {
asm!(
"cpuid",
"mov {bx:e}, ebx",
// “output operands” following
bx = lateout(reg) ebx,
lateout("ecx") ecx,
lateout("edx") edx,
// “input operands” following
in("eax") 0,
// “clobbers” list
lateout("eax") _,
// “options” � {"pure", "nomem", "nostack"}
options(nomem, nostack)

);
}

14 Lukas Prokop | RustGraz community

https://www.lukas-prokop.at/articles/2021-11-10-rdtsc-with-rust-asm


Software security

• branch instructions independent of the secret

• memory access pattern independent of the secret

• runtime independent of the secret (constant time algorithms)

Various countermeasures in physical security:
Masking, shuffling, randomized instruction order, …

Various countermeasures in software security:
Branch independence, indexing independent of secret, prevention of data races, …

15 Lukas Prokop | RustGraz community



Constant time algorithms



argument is non-zero

Problem: Let a be integer∈ {0, . . . , 15}. Return 0 if a = 0 else 1.

static inline uint8_t gf16_is_nonzero(uint8_t a) {
unsigned a4 = a & 0xf;
unsigned r = ((unsigned) 0) - a4;
r >>= 4;
return r & 1;

}

via Rainbow round 3 reference implementation, gf16.c

16 Lukas Prokop | RustGraz community



Reminder: two’s complement

How does one represent non-negative integer i bitwise?
Value 0 is a sequence of zeros. Value 1 has the least-significant bit (LSB) zero but others
set to one (i.e. …0001). Value 2 is represented as…0010. And so on…

How does one represent−i for non-negative integer i bitwise?
Themost common encoding used on all platforms is the two’s complement: If wemap
value i to the negative space, we need to invert all bits and add 1. Example: …0001
inverted, gives…1110 and adding 1 gives…1111. Thus,−1 is a sequence of ones.

17 Lukas Prokop | RustGraz community

https://en.wikipedia.org/wiki/Two%27s_complement


argument is non-zero

Description:

• recognize that a4 (unlike a) has more than 8 bits.
• if a is zero

• then 0− 0 yields zero for r
• the fourth bit of r is zero
• returns 0

• else
• a4 has 4 bits set
• the two’s complement by 0− a4 sets the fifth, sixth, … bits to one
• the fourth bit of r is one
• returns 1

18 Lukas Prokop | RustGraz community



conditional move

Problem: If b = 1, copy len elements from x to r. If b = 0, don’t do anything.

/* b = 1 means mov, b = 0 means don't mov*/
void cmov(unsigned char *r, const unsigned char *x,

size_t len, unsigned char b)
{
size_t i;

b = (~b + 1);
for(i=0;i<len;i++)
r[i] ^= b & (x[i] ^ r[i]);

}

via Classic McEliece round 3 reference implementation, int32_sort.c

19 Lukas Prokop | RustGraz community



Reminder: XOR

• XOR is denoted by the ^ operator

• XOR is a bitwise binary operator and returns 1 iff both bits are different

• a ^ b for some integers a and b is zero iff a equals b

• a ^ a for some integer a is always zero

20 Lukas Prokop | RustGraz community



conditional move

Description:

• recognize that b is (two’s complement) negated first.

• thus, if b is zero, it retains zero. Otherwise b becomes a sequence of ones bits (−1).
• if b is zero

• we compute r[i] = r[i] ^ 0

• if b is a sequence of ones bits
• we compute r[i] = r[i] ^ (x[i] ^ r[i])
• this equals r[i] = (r[i] ^ r[i]) ^ x[i]
• this equals r[i] = 0 ^ x[i] = x[i]

21 Lukas Prokop | RustGraz community



modulo 3

Problem: Compute a mod 3 of some integer a ∈ {0, 1, . . . , 213 − 1}.

Blog article “Deriving algorithms for computing modulo constant n” (2021)
Blog article “mod3 of NTRU’s reference implementation” (2021)
static uint16_t mod3(uint16_t a)
{

uint16_t r;
int16_t t, c;
r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255
r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15
r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3
r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

t = r - 3;
c = t >> 15;
return (c&r) ^ (~c&t);

}

via NTRU round 3 reference implementation sample_iid.c22 Lukas Prokop | RustGraz community

https://www.lukas-prokop.at/articles/2021-06-15-modulo
https://www.lukas-prokop.at/articles/2021-06-16-mod3


modulo 3

Rough description (blog articles contain details):

• in general, ‘(a mod kp) mod p’ equals ‘a mod p’ where a, k, p ∈ Z

• 15 and 255 are multiples of 3

• the first three assignments r use this principle to reduce mod 3, but not completely

• after the first three assignments, r ∈ {0, 1, . . . , 5}with r ≡ a mod 3

• so, t ∈ {−3,−2, . . . , 2}
• c is 0 if t is negative and 1 otherwise

• we return r if c is zero, otherwise t

23 Lukas Prokop | RustGraz community



0,1,2 to 0,1,q-1

Problem: Given a polynomial r with coefficients∈ {0, 1, 2}. Map them to
{0, 1,NTRU_Q− 1} assuming the three LSBs of NTRU_Q− 1 are ones.

/* Map {0, 1, 2} -> {0,1,q-1} in place */
void poly_Z3_to_Zq(poly *r)
{

int i;
for(i=0; i<NTRU_N; i++)

r->coeffs[i] = r->coeffs[i]
| ((-(r->coeffs[i]>>1)) & (NTRU_Q-1));

}

via NTRU round 3 reference implementation poly.c

24 Lukas Prokop | RustGraz community



0,1,2 to 0,1,q-1

Description:

• r->coeffs[i]>>1 is 0 for values {0, 1} and 1 for {2}
• -(r->coeffs[i]>>1) is 0 for values {0, 1} and a sequence of ones for {2}
• if the value is 0 or 1, we apply AND to 0 and NTRU_Q− 1 which is 0

• if the value is 2, we apply AND to−1 and NTRU_Q− 1 which is NTRU_Q− 1

25 Lukas Prokop | RustGraz community



minmax

Problem: Given 31-bit integers a and b. Assign a = min(a, b) and b = max(a, b)

#define int32_MINMAX(a,b) \
do { \
int32_t ab = b ^ a; \
int32_t c = b - a; \
c ^= ab & (c ^ b); \
c >>= 31; \
c &= ab; \
a ^= c; \
b ^= c; \

} while(0)

26 Lukas Prokop | RustGraz community



minmax

Description:

• c is positive if b ≥ a and negative otherwise

• 32nd bit of c indicates whether we need to swap

• A right-shift operator for signed integers replicates the most-significant bit. So,
0b1000_0000i8 >> 7 == 0b1111_1111

• so we apply AND between c and b ^ a

• If a ≥ b, a = a ^ ab = a ^ b ^ a = b
else a < b, a = a ^ ab = a ^ 0 = a

This code is the fundamental routine for conditional swaps to implement sorting
algorithms. To implement sorting algorithms in constant time, you need algorithms
similar to merge sort (c.f. TAOCP, Vol 3, sorting networks).

27 Lukas Prokop | RustGraz community



number of trailing zeros of the non-zero input in

Description: Count the number of zero bits next to the LSB (“trailing zeros”)

static inline int ctz(uint64_t in) {
int i, b, m = 0, r = 0;

for (i = 0; i < 64; i++) {
b = (in >> i) & 1;
m |= b;
r += (m^1) & (b^1);

}

return r;
}

via Classic McEliece round 3 reference implementation, pk_gen.c28 Lukas Prokop | RustGraz community



number of trailing zeros of the non-zero input in

Description:

• b contains the i-th bit of variable in

• m is one iff b is one or any bit before is one

• r is a counter

• Assume the LSB is zero, then b is zero,m is zero.
(0^1) & (0^1) = 1 & 1 = 1.

• Assume the LSB is one, then b is one,m is one.
(1^1) & (1^1) = 0 & 0 = 0.

• If a consecutive bit is zero, but a previous bit was one, one element of the AND
operation becomes zero and thus zero will be added to r.

29 Lukas Prokop | RustGraz community



Audience quiz



Problem statement

static inline unsigned char same_mask(uint16_t x, uint16_t y);

Problem: If x equals y, return non-zero. If x does not equal y, return zero.

Goal: write a constant time algorithm.

30 Lukas Prokop | RustGraz community



Solution

static inline unsigned char same_mask(uint16_t x, uint16_t y)
{
uint32_t mask;

mask = x ^ y;
mask -= 1;
mask >>= 31;
mask = -mask;

return mask & 0xFF;
}

via Classic McEliece round 3 reference implementation, pk_gen.c

31 Lukas Prokop | RustGraz community



Thank you! Q/A?



Advertisment

Grazer Linuxtage:

• https://www.linuxtage.at/en/

• Fri, 2022-04-22 and Sat, 2022-04-23

• On-site event at TU Graz Inffeld

• Please submit your proposal!

32 Lukas Prokop | RustGraz community

https://pretalx.linuxtage.at/glt22/cfp

	Introduction
	Usecase
	Constant time algorithms
	Audience quiz

