
Functional functions in python
map, zip, fold, apply, filter, …

Lukas Prokop
1st of March 2016

A 10-minutes presentation

Table of contents

1. Background

2. List comprehensions

3. Functions

4. Conclusions

1

Background

Background

The functions we will discuss follow directly from the Lambda calculus.

What’s that? You know Turing machines as computational models? The
Church-Turing thesis claims that anything computable by a Turing
machine can be computed using Lambda Calculus.

In most simple words: Lambda Calculus is “model everything as
function”.

Functional programming languages implement the Lambda Calculus.
This is why Lambda Calculus is popular among Haskellers, Clojurers, …

2

Python

Python is multi-paradigmatic (you can program object-oriented,
imperative, functional, etc)1

So we can use tools of functional programming in python, right? Yes, but
in a limited way (missing lazy evaluation, tail-call optimization, monads,
immutable data structures, etc).

Advantages:

1. Easy testable (follows from referential transparency)
2. Mathematically reasonable (useful for formal verification)

Disadvantages:

1. Less popular, therefore high bus factor
2. Purely functional is impossible

1If you really want to…

3

First-class citizens

Python has functions with first-class citizenship. So we can use functions
taking functions as arguments (higher-order functions). Example:

1 >>> a = [2, -3, 5, 4]
2 >>> a.sort(key=lambda v: abs(v))
3 >>> a
4 [2, -3, 4, 5]

Wait? Did I say lambda? Yes, as in Lambda Calculus.

4

List comprehensions

Why lists?

Lambda Calculus likes lists. Why?

We don’t use mutable data structures where we iterate over all values
and manipulate one after another. Or pass them as pointer to a function.

We do create a list of values. We pop the top element and apply a
function to it. The remaining values constitute a new list. No pointers.

So essentially, this results directly from recursion over iteration a.

5

List comprehensions in python

A very convenient tool to create new lists.

In mathematics, we have

{{a, b} : a ̸= b, a, b ∈ V}

In python, we have:

1 V = {1, 3, 5, 6}
2 E = [{a, b} for a in V for b in V if a != b]

6

List comprehensions in python

Simple expressions:

1 ints = [x for x in range(1, 20)]

We can do what we will come to know as map():

1 f = lambda v: v**2
2 mapped = [f(x) for x in range(1, 20)]

We can do what we will come to know as filter():

1 import re
2 # abigail's regex
3 pred = lambda v: not re.match(r'1?$|^(11+?)\1+$', '1' * v)
4 filtered = [x for x in range(20) if pred(x)]

7

List comprehensions in python

What about generators?

1 f = lambda x: x * 2
2 gen = (f(x) for x in range(1, 20))

What about dictionary comprehensions?

1 compr1 = dict((x, f(x)) for x in range(1, 20))
2

3 # How thinks this works?
4 compr2 = {x: f(x) for x in range(1, 20)}

8

List comprehensions in python

It does.

PEP 274, Barry Warsaw, 2001 2

1 >>> {i : chr(65+i) for i in range(4)}
2 {0: 'A', 1: 'B', 2: 'C', 3: 'D'}
3 >>> {(k, v): k+v for k in range(4) for v in range(4)}
4 {(3, 3): 6, (3, 2): 5, (3, 1): 4, (0, 1): 1, ...}

2Withdrawn for Python 2.3 but included in Python 2.7 and Python 3.0

9

List comprehensions in python

And finally set comprehensions:

1 a = {x*2 for x in range(20)}

10

Functions

all (conjunction)

all() returns true, if – and only if – all values are true.

1 ints = {2, 3, 7, 23}
2 is_prime = lambda v: not re.match(r'1?$|^(11+?)\1+$', '1' * v)
3 print(all([is_prime(v) for v in ints]))

What about an empty sequence?

1 >>> print(all([]))
2 True

11

any (disjunction)

any() returns true, if – and only if – some value is true.

1 ints = {2, 4, 6, 8}
2 print(any([is_prime(v) for v in ints]))

What about an empty sequence?

1 >>> print(any([]))
2 False

12

zip (convolution)

1 """
2 class zip(object)
3 | zip(iter1 [,iter2 [...]]) --> zip object
4 |
5 | Return a zip object whose .__next__()
6 | method returns a tuple where the i-th
7 | element comes from the i-th iterable
8 | argument. The .__next__() method
9 | continues until the shortest iterable in

10 | the argument sequence is exhausted and
11 | then it raises StopIteration.
12 """

13

zip (convolution)

1 >>> zip("hello", "world")
2 <zip object at 0x7fb624099dc8>
3 >>> list(zip("hello", "world"))
4 [('h', 'w'), ('e', 'o'), ('l', 'r'), ('l', 'l'), ('o', 'd')]

It really reminds of a zipper
“A device for temporarily joining two edges of fabric together”

14

zip (convolution)

It also works for arbitrary many iterables:

1 >>> list(zip({0,3,6}, {1,4,7}, {2,5,8}))
2 [(0, 1, 8), (3, 4, 2), (6, 7, 5)]

15

min/max/sum

Pretty straightforward: Returns the minimum or maximum value or the
sum.

1 >>> min([2, 56, 3])
2 2
3 >>> max([2, 56, 3])
4 56
5 >>> sum([2, 56, 3])
6 61

16

min/max/sum

You can also define a key to select an criterion.

1 >>> min([('lukas', 1), ('horst', 9), ('thomas', 3)],
2 ... key=lambda v: v[1])
3 ('lukas', 1)
4 >>> max([('lukas', 1), ('horst', 9), ('thomas', 3)],
5 ... key=lambda v: v[1])
6 ('horst', 9)

sum() does not, but can take an initial value.

1 >>> sum([1, 4, 6], 100)
2 111

17

map

1 """
2 class map(object)
3 | map(func, *iterables) --> map object
4 |
5 | Make an iterator that computes the
6 | function using arguments from each
7 | of the iterables. Stops when the
8 | shortest iterable is exhausted.
9 """

18

map

Apply a function to every value of an iterable:

1 >>> map(lambda v: v + 1, [1, 3, 5, 10])
2 <map object at 0x7f5939cbef98>
3 >>> list(map(lambda v: v + 1, [1, 3, 5, 10]))
4 [2, 4, 6, 11]

Corresponds to Visitor pattern in OOP.

19

filter

1 """
2 class filter(object)
3 | filter(function or None, iterable)
4 | --> filter object
5 |
6 | Return an iterator yielding those items
7 | of iterable for which function(item)
8 | is true. If function is None,
9 | return the items that are true.

10 """

20

filter

1 >>> import re
2 >>> is_prime = lambda v: not \
3 ... re.match(r'1?$|^(11+?)\1+$', '1' * v)
4 >>> filter(is_prime, range(1, 20))
5 <filter object at 0x7fc3b0750ac8>
6 >>> list(filter(is_prime, range(1, 20)))
7 [2, 3, 5, 7, 11, 13, 17, 19]

21

apply

1 >>> apply(lambda v: v + 1, [3])
2 4

Deprecated since version 2.3: Use function(*args, **keywords)
instead of apply(function, args, keywords) (“unpacking”).

In Python 3.0 apply is undefined.

22

fold/reduce

Left-folding is called reduce in python

1 >>> # computes ((((1+2)+3)+4)+5)
2 >>> reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
3 15

Python 3.0: Removed reduce(). Use functools.reduce() if you
really need it; however, 99 percent of the time an explicit for loop is more
readable.

23

Guido on those functions

“About 12 years ago, Python aquired lambda, reduce(), filter()
and map(), courtesy of (I believe) a Lisp hacker who missed
them and submitted working patches. But, despite of the PR
value, I think these features should be cut from Python 3000.
Update: lambda, filter and map will stay (the latter two with
small changes, returning iterators instead of lists). Only reduce
will be removed from the 3.0 standard library. You can import
it from functools.” —Guido van Rossum, 10th of March 2005

24

http://www.artima.com/weblogs/viewpost.jsp?thread=98196

Conclusions

Conclusions

Python fundamentally provides some simple primitives which can make
your code more concise.

• The operator package provides operator methods as functions
(unbounded)

• The functools package specifically provides features of functional
programming

• The itertools package provides primitives for generators and
combinatorics

The Python documentation call them functional packages.

Curring is provided as functools.partial, but I didn’t cover that.

25

https://docs.python.org/3/library/functional.html

Conclusions

Shall I use them?

• If it fits your intuition kindly.
• Don’t overdo functional programming in Python!
• Decide yourself whether a function call or list comprehension is more

convenient.

26

Thanks

Thanks for your attention!

27

	Background
	List comprehensions
	Functions
	Conclusions

