

Let's write a LISP lexer together

2024-02-06

Coding dojo by @meisterluk

Vocabulary
● An interpreter reads source code and applies

semantics immediately
● A formal grammar specifies the set of admissible

source codes for the interpreter
● An interpreter can include a lexical analysis /

tokenization (component “lexer”) and a semantic
analysis / parsing (component “parser”)

The simplest formal grammar
Input source code:

W

Output:

Hello world!

Input source code:

W

The simplest formal grammar

Admissible source codes:

W

Output:

Hello world!

Input source code:

W

The simplest formal grammar

Output:

Hello pygraz!

Input source code:

P

The simplest formal grammar

Admissible source codes:

W
P

Output:

Input source code:

The simplest formal grammar

Admissible source codes:

W
P

Output:

Input source code:

Implementation:

if src == "W":
 print("Hello world!")
else:
 print("Hello pygraz!")

The simplest formal grammar

Admissible source codes:

W
P

Output:

Input source code:

Implementation:

if src.strip() == "W":
 print("Hello world!")
else:
 print("Hello pygraz!")

The simplest formal grammar

Boooring – can we do something non-static?

A non-static formal grammar
Admissible source codes:

put <some-string>

Output:

Hello world!

Input source code:

put Hello world!

Admissible source codes:

put <some-string>

Output:

Hello world!

Input source code:

put Hello world!

Implementation:

assert(src[0:4] == "put ")
print(src[4:])

A non-static formal grammar

But what if we need to compute
the output string beforehand?

Admissible source codes:

put <some-string>
and expression sum(<args>)

Output:

Hello 9!

Input source code:

put Hello sum(4, 5)!

Implementation:

An expressive formal grammar

Admissible source codes:

put <some-string>
and expression sum(<args>)

Output:

Hello 9!

Input source code:

put Hello sum(4, 5)!

Implementation:

?

An expressive formal grammar

put Hello sum(4, 5)!

An expressive formal grammar

identifiers
arguments
operators

put Hello sum(4, 5)!

An expressive formal grammar

identifiers
arguments
operators

Why are identifiers invoked so differently?

Where do I need commas between arguments?

What happens if I use "sum" as argument?

(put Hello (sum 4 5) !)

The simplest nested formal grammar

identifiers
arguments
operators

(put Hello (sum 4 5) !)

The simplest nested formal grammar

identifiers
arguments
operators

parenthesized prefix notation

(put Hello (sum 4 5) !)

The simplest nested formal grammar

identifiers
arguments
operators

parenthesized prefix notation = LISP?

LISP

 Wikipedia EN: Lisp (programming language)

https://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)&oldid=1196562698

 Wikipedia EN: Lisp (programming language)

https://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)&oldid=1196562698

In my opinion
● LISP is a programming language with syntax (defining

a formal grammar) and semantics
● The LISP family/dialects is a set of programming

languages following the style of LISP 1.0 or LISP 1.5
● The syntax of LISP is called S-expressions.
● S-expressions is a form of parenthesized prefix

notation

S-expressions

Coding Dojo
Task:

Let us read a file written in parenthesized prefix notation.

Coding Dojo
Task:

Let us read a file written in parenthesized prefix notation.

Funfacts:

● The standard library code module provides a REPL to parse python
code: https://bernsteinbear.com/blog/simple-python-repl/

● Peter Norvig documented our task in a blog post:
https://norvig.com/lispy.html
“The beauty of Scheme is that the full language only needs 5
keywords and 8 syntactic forms. In comparison, Python has 33
keywords and 110 syntactic forms, and Java has 50 keywords and 133
syntactic forms.”

https://bernsteinbear.com/blog/simple-python-repl/

Approach
1) Identify individual characters of the formal grammar. Give them

names.
2) Define an INIT state. Which characters are admissible?
3) Reiterate to identify the lexing state diagram.
4) Yield tokens as you read character by character
5) A parser fetches these tokens to put them into a nested structure
6) The nested structure is interpreted.

Approach
1) Identify individual characters of the formal grammar. Give them

names.
2) Define an INIT state. Which characters are admissible?
3) Reiterate to identify the lexing state diagram.
4) Yield tokens as you read character by character
5) A parser fetches these tokens to put them into a nested structure
6) The nested structure is interpreted. parser

lexer

Let's go!

	Lumbildo 1
	Lumbildo 2
	Lumbildo 3
	Lumbildo 4
	Lumbildo 5
	Lumbildo 6
	Lumbildo 7
	Lumbildo 8
	Lumbildo 9
	Lumbildo 10
	Lumbildo 11
	Lumbildo 12
	Lumbildo 13
	Lumbildo 14
	Lumbildo 15
	Lumbildo 16
	Lumbildo 17
	Lumbildo 18
	Lumbildo 19
	Lumbildo 20
	Lumbildo 21
	Lumbildo 22
	Lumbildo 23
	Lumbildo 24
	Lumbildo 25
	Lumbildo 26
	Lumbildo 27
	Lumbildo 28
	Lumbildo 29
	Lumbildo 30
	Lumbildo 31
	Lumbildo 32
	Lumbildo 33
	Lumbildo 34

