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4

http://opt.math.tu-graz.ac.at/~cela/Vorlesungen/KombOpt1/main.htm
mailto:admin@lukas-prokop.at


2 Introduction

2.1 A generic combinatorial optimization problem

Synonym for “Instance”. Input, given.

Synonym for “Task”. Output.

An instance has a finite base set E = {e1, . . . ,en}. The set of valid solutions is a subset
F ⊆ 2E = P(E). One valid solution is F ∈ F.

c : F→ R

F 7→ c(F)

A task is some F∗ ∈ F with c(F∗) = minF ∈F c(F) (minimization problem). Some F∗ ∈ F
with c(F∗) = maxF ∈F c(F) is a maximization problem.

2.2 Possible common cost models

w : E → R

e 7→ w(e)

Where w is called weight. Two common cost functions:

c(F) :=
∑
e∈F

w(e) (sum problem) (1)

c(F) := max
e∈F

w(e) (bottleneck problem) (2)

2.3 Problem 1: Drill machine problem

A drill machine must drill holes onto a board. Drill heads move vertically. Boards move hor-
izontally. Movements happen with constant speed. Movements can happen simultaneous.
Drilling is not considered as movement. With these assumptions the time necessary to drill
all holes is direct proportional to the path taken by the drill head and board.

production time ∝ path(drill head, board)

The time taken to move from hole 1 to hole 2 is

max{|x1 − x2 |, |y1 − y2 |}
The total costs to drill all holes are:

n−1∑
i=1

max{|xi − xi+1 |, |yi − yi+1 |}
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where the relative coordinates of n holes is denoted as (xi , yi ) with 1 ≤ i ≤ n and the holes
are drilled in order 1,2, . . . ,n.

Is π a permutation of {1,2, . . . ,n} (π ∈ Sn ). If holes are drilled in order π, then

production time =
n−1∑
i=1

max{|xπ (i) − xπ (i+1) |, |yπ (i) − yπ (i+1) |}
The drill machine problem as generic problem (sum problem):

c = production time

F = Sn
c : Sn → R

π →

n−1∑
i=1

max{|xπ (i) − xπ (i+1) |, |yπ (i) − yπ (i+1) |}
E = {l∞(Pi ,Pj ) : 1 ≤ i, j ≤ n, i , j}

2.4 Problem 2: Scheduling problem

Given. We have m workers and n tasks. We assume that every task must be completed by some
worker. Not necessarily every task can by done by every worker. Let Si ⊆ {1,2, . . . ,m}be the
set of workers, that can complete job i; with 1 ≤ i ≤ n. All workers of Si complete task i with
the same speed. Let ti be the required time to complete job i. Every task can be completed
by several workers. Every worker can work on several tasks, but not simultaneously.

Find. Define a work schedule to minimize the total time to complete all tasks (bottleneck
problem).

We define ti j as the length of time interval in which worker j completes job i such that
ti =

∑
j ∈Si

ti, j ∀ 1 ≤ i ≤ n. The work time of worker j is defined as
∑

i: j ∈Si
ti, j and

time to complete is defined max1≤ j≤m, i: j ∈Si

∑
ti j → min. The completeness time is called

“makespan”.

3 Partial enumeration

Given. n ∈ N , n ≥ 3, {p1,p2, . . . ,pn} are points on a plane, d is the distance function

Find. a permutation π∗ ∈ Sn with c(π∗) =
∑n−1

i=1 d∞(pπ∗ (i),pπ∗ (i + 1)) minimized

1. Let π(i) = i, π∗(i) = i, ∀ 1 ≤ i ≤ n, i = n − 1

2. Let k = min({π(i) + 1, . . . ,n + 1} \ {π(1), π(2), . . . , π(i − 1)})

3. if k ≤ n then

(a) Let π(i) = k
(b) if i = n and c(π) < c(π∗) then π∗ = π
(c) if i < n then set π(i + 1) = 0 and i = i + 1.

if k = n + 1 then i = i − 1
if i ≥ 1 then goto 2

6



3.1 Working principle

In every step the algorithm finds the (lexicograpical) next possible value for π(i) without
duplicates of π(1), π(2), . . . , π(i − 1). If this is impossible, then reduce i by 1 (backtracking
approach). Otherwise we set π(i) to our new value k . If i = n then a new permutation is
given and costs are evaluated and compared, otherwise the algorithm tries all possible values
π(i + 1) . . . π(n) and starts with π(i + 1) = 0 with i being incremented successively.

Hence the algorithm generates all permutations in lexicographical order.

3.2 Algorithm efficiency

The actual costs can only be computed relative to n. We define costs in terms of steps. One
step is defined as one arithmetic operation, assignment, comparison, logical statements, goto
jump or value lookup (“elementary step”, ES). We look at the algorithm in terms of costs:

1. 2n + 1 ES

2. O(n) with helper vectors auxiliary( j) = 1 if j < i.

3. Constant number of ES unless i = n, then 2n + 1 additionally. In any case not more
than ≤ O(n) ES.

How often are steps 2 and 3 of the algorithm executed? O(n2) if new permutation is not
created (without backtracking) and O(n) with backtracking. In total O(1) every time O(n2)
(without backtracking) or O(n) every time O(n) each O(n2) (with backtracking).

So the algorithm has computational complexity of O(n2 · n!) ES.

4 Analysis of algorithms

This lecture took place on 6th of Oct 2014.

A finite, deterministic algorithm is a sequence of valid inputs and instructions which consists
of elementary steps such that the computational task gets completed for every possible input.
For every possible input the algorithm computes a finite, deterministic output.

Given. A sequence of numbers. If rational, then binary encodable:

e ∈ Z→encodes log |a | + 2

Logarithms are always considered with base 2 here.

Inputsize. We denote the size of the input for x with size(x). For some rational input x the
size(x) is the number of 0 and 1 in the binary representation.

1. Let A be an algorithm which accepts inputs x ∈ X . Let f : N→ R+. If there is some
constant α > 0, such that A ∀ x ∈ X terminates the computation after at maximum
α f (size(x)) elementary steps, we say “A has a time complexity of O( f )”.

7



2. An algorithm A with rational inputs has a polynomial runtime (or “is polynomial”)
iff ∃k ∈ N0

(a) A has a time complexity of O(nk )

(b) all intermediate values of the computation can be stored with O(nk ) bits

3. An algorithm A with arbitrary input is called strongly polynomial if∃k ∈ N0 such that
A

(a) requires for every of n numbers of the input a runtime of O(nk )

(b) is polynomial for every rational input

4. An algorithm A which is polynomial, but not strongly polynomial, is called weakly
polynomial.

5. Let A be an algorithm which computes for every input x ∈ X output f (x) ∈ Y .
We state that A computes the function f : X → Y . Is a function computable by a
polynomial algorithm, we call it a polynomial computable function.

The runtime of a polynomial algorithm is a function of the input. The runtime of a strongly
polynomial algorithm is a function of the number of input elements.

Remark. Let A have runtime complexityO(n2). This means not all instances of input length
n require θ(n2) elementary steps. O(n2) is an upper bound (worst-case time complexity).

5 Spanning trees and arborescences

G = (V,E) e ∈ E is e = {x, y} with x, y ∈ V

where V (G) is the set of vertices of G and E(G) is the set of edges of G. One of the earliest
problems in combinatorial optimization is the computation of minimum spanning trees.

5.1 Minimum spanning tree problem (MST)

Given. Undirected graph G, c : E(G) → (R)

Find. Find a spanning tree T with minimum weight c(T ) =
∑

e∈T c(e) in G or determine
“G is not connected”.

5.2 Maximum weight forest problem (MWF)

Given. Undirected graph G, c : E(G) → (R)

Find. A spanning forest F (cyclefree subgraph with vertex set V (G)) with maximum weight

c(F) :=
∑
e∈F

c(e) ∈ G

8



5.3 Equivalence of problems

Two problems are called equivalent if P is reducible to Q and Q is reducible to P. P is re-
ducible to Q, if there are two linear computable functions f and g such that

1. for every instance I of P, f (I) is an instance of Q

2. for every solution L of Q, g(L) is a solution of P

(P[I])
f
−→ (Q[ f (I)],L)

g
−→ g(L)

5.4 MST and MWF are equivalent

Theorem 1. The MWF problem and MST problem are equivalent.

5.4.1 Reduce MWF to MST

MWF is reducible to MST. Let (G,c) be an instance of MWF. Remove all e ∈ E(G) with
c(e) < 0. Let c′(e) = −c(e) for all remaining edges of E(G). Insert a minimum set of edges
F with arbitrary weights, such that the resulting graph is connected. Denote this graph with
G′.

The computationally most intense task is insertion of the minimum set of edges. Determi-
nation of connected components is possible in linear time (eg. with DFS).

Consider instance (G′,c′) of the MST problem. Let T ′ be an optimal solution of MST with
(G′,c′).

Remove F of T ′. Let T be the resulting subgraph. Show that T is a spanning forest with
maximum weight in (G,c). (F ⊆ E(T ′) results from the definition of F as minimum . . . ).

T must be spanning forest because T ′ is a spanning tree.

c(T ) = −(c′(T ′) − c′(F)) = −c′(T ′) + c′(F)

c′(F) is the constant available in all spanning tree of G′. If T ′minimizes c′(T ′) such that T
of c(T ) is maximized.

5.4.2 Reduce MST to MWF

Let (G, i) be an instance of the MST problem. Let

c′(G) = K − c(e) with K = max
e∈E (G)

c(e) + 1⇒ c′(e) > 0 ∀ e ∈ E(G)

Consider (G,c′) as instance of MWF (linear runtime). Let F be a maximum weight spanning
forest in (G′,c′). Case distinction:

F is not a tree: G is not connected

F is a spanning tree: F is the optimal solution of MST because

c′(F) =
∑

e∈E (F )

(K −c(e)) = (|V (G) |−1)K −
∑

e+E (F )

c(e) = (|V (G) |−1)K −c(F)

9
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Figure 1: Sketch for proof construction a ⇒ b

Theorem 2. (Optimality conditions.) Let (G, i) be an instance of MST and T be a spanning
tree in G. In this case the following statements are equivalent:

• T is optimal

• ∀ e = {x, y} ∈ E(G) \ E(T ): no edge of the x-y-path in T has greater weight than e

• ∀ e ∈ E(T ): If C is one of the connected components of T \ {e}, then e is an edge
from δ(V (c)) with minimum weight.

• E(T ) = {e1,e2, . . . ,en−1} can be ordered such that ∀ i ∈ {1,2, . . . ,n − 1} there is a
set X ⊆ V (G) such that ei ∈ δ(X ) with minimum weight and e j , δ(X ) ∀ j ∈{1,2, . . . , i − 1}.

Cut.
X ⊂ V (G)

δ(X ) = {e ∈ E(G) : |e ∩ X | = 1}
Theorem 3. a ⇒ b⇒ c ⇒ d ⇒ a.

5.4.3 a ⇒ b

c(e) ≥ c( f ) for every f in x-y-path in T , because otherwise T − e + f is a spanning tree
with c(T − e + f ) = c(T ) − c(e) + c( f ) < c(T ) which contradicts.

5.4.4 b⇒ c

Show ∀ e ∈ E(T ) : c(e) ≤ c( f ) ∀ f ∈ δ(V (c)). Every edge e ∈ T defines an cut
δ(V (c)) = δ(e). Hence we improve the tree.

5.4.5 c ⇒ d

Show there exists some weighted order and cuts with properties like in c. Select a random
order {e1,ei−1,ei ,en−1}. ∀ e ∈ {1,2 . . . ,n − 1} consider cut δ(cei ). It has the desired prop-
erties.
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Figure 2: Sketch for b⇒ c

5.4.6 d ⇒ a

Assumption E(T ) = {e1, . . . ,en−1} is satisfied.

Let T∗ be an optimal spanning tree such that i(T∗) = min{h ∈ {1,2, . . . ,n − 1} : en <
E(T∗)} is maximum.

We show i = +∞ and hence T∗ ≡ T ⇒ T is optimal. Assumption i < +∞. Then X ⊂
V (G) with ei ∈ δ(v) with minimum weight with e j < δ(X ) ∀ j < i.

∃ f , ei with f ∈ T∗ ∩ δ(X )

c( f ) ≥ c(ei )

c( f ) ≤ c(ei )

⇒ c( f ) = c(ei )

T∗− f +ei is an optimal spanning tree and has i(T∗− f +ei ) > i(T∗). This is a contradiction.

5.5 Kruskal’s algorithm

This lecture took place on 7th of Oct 2014.

Algorithm 1 Kruskal’s algorithm
Given. G is a connected undirected graph, c : E(G) → R
Find. minimum spanning tree

1: Sort edges c(e1) ≤ c(e2) ≤ . . . ≤ c(em ) (m = |E(G) |)
2: Set T := (V (G), φ)
3: for i from 1 to m do
4: if T ∪ {ei} is cycle-free then
5: E(T ) = E(T ) ∪ {ei}
6: end if
7: end for

Theorem 4. Krukal’s algorithm is correct.
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From the previous theorem we can derive: ∀ e = {x, y} < E(T ) we can say c( f ) ≤ c(e) ∀ f
edges from the x-y-path in T .

(x, y) = e < E(T ) ⇒ ei closes cycle with E(T ) ∩ {e1, . . . ,ei−1}
⇒ E(x − y − path ∈ T ) ⊆ {e1, . . . ,ei−1}
⇒ ∀ f ∈ E(x − y − path) : c( f ) ≤ c(ei )

Trivial implementation. O(m · n) because there are m iterations and per iteration one check
whether the current edge with the given T (≤ n edges) creates a cycle (O(n) with DFS).

Definition 5. A digraph G is called branching, if it is cycle-free and every v ∈ V (G) :
indegree(v) ≤ 1.

Notation. indegree(v) = deg−(v).

Definition 6. A connected branching is called arborescence. The vertex r with deg−(r) = 0
is called root. An arborescence is the directed-graph equivalent of a rooted tree.

Notation.
δ({v}) = δ(v)

δ+(v) = {e = (v, y) ∈ E(G)}
δ−(v) = {e = (x,v) ∈ E(G)}

Theorem 7. Let G be a digraph with n vertices. The following 7 statements are equivalent:

1. G is an arborescence with root r .

2. G is a branching with n − 1 edges and deg−(r) = 0.

3. G has n − 1 edges and every vertices is reachable from r .

4. Every vertex is reachable from r and removal of one edge destroys this property.

5. G satisfies δ+(X ) , 0 ∀ X ⊂ V (G) with r ∈ X . The removal of one arbitrary edge
destroys this property.

6. δ−(r) = 0 and ∀ v ∈ V (G) \ {r}∃ one distinct directed r − v-path in G

7. δ−(r) = 0 and ��δ−(v) �� = 1 ∀ v ∈ V (G) \ {r} and G is cycle-free.

A proof for Theorem 7 is not provided. It will be provided in the practicals.

Theorem 8. Kruskal’s algorithm can be implemented with time complexity O(m log n).

Proof. The implementation keeps a branching B with

• V (B) = V (G)

• connected components of B vertex-correspond with the connected components of T

�
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How can we create such a branching?

1. At the beginning (after initialization): B = (V (G),0).

Be aware that checking whether {v,w} creates a cycle with T , consider that w must be in the
same connected component in T (or B). We can check this in O(log n).

In branching:

• Let rv (rw ) be the root of v(w) contained solutions of B.

rv = rw

The computational effort for checking is equivalent to the effort for the determination
of rv and rw which is proportional to the sum of the lengths of rv -v-path or rw -w-
path in B.

Hypothesis 9. In B it holds that h(r) ≤ log n for every root r where h(r) is the maximum
length of an r-v-path in B.

rx ry

x

y
h(rx) h(ry)<

Figure 3: Branching insertion operation

Proof. Induction over number of edges in B.

Base. For zero edges this is trivial to prove.
Step. We will add a new edge {x, y} and beforehand h(r) ≤ log n is satisfied. We have to
show that h(r) ≤ log n is satisfied after the insertion of {x, y}.

Case distinction:

• h(rx ) = h(ry ). Insert (rx ,ry ) or (ry ,rx ) In the figure we have to ensure h(rx ) ≤
log rx ⇔ mx ≤ 2h(rx ) .

ĥ(rx ) = h(rx ) + 1

nx,y = nx + ny ≥ 2h(rx ) + 2h(ry )

= 2 · 2h(rx ) = 2h(rx )+1

= 2ĥ(rx )
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• h(rx ) < h(ry ). Insert (ry ,rx ).

ĥ(ry ) = h(ry )

nxy ≥ ny ≥ 2h(ry ) = 2ĥ(ry )

�

5.6 Prim’s algorithm

Algorithm 2 Prim’s algorithm
Given. G is a connected undirected graph, c : E(G) → R
Find. minimum spanning tree

1: Set T = ({v} ,0) for an arbitrary v ∈ V (G)
2: while V (T ) , V (G) do
3: Select one edge e ∈ δG (V (T )) with minimum weight
4: T := T + e
5: end while

Theorem 10. Prim’s algorithm is correct and can be implemented with time complexity of
O(n2). Correctness follows from theorem 2.2.d (a ⇒ b ⇒ c ⇒ d ⇒ a): Spanning tree is
optimal⇔ order of edges e1, . . . ,en−1 such that ∀ i ∈ {1,2, . . . ,n − 1}∃xi ⊂ V (G) with
ei ∈ δ(Xi ) is the minimum edge in δ(Xi ) and e j < δ(Xi ) is the cheapest edge of δ(Xi ) and
e j < δ(Xi ) ∀ 1 ≤ j ≤ i − 1. This is satisfied by construction.

The desired order (or cuts) will be created by the algorithm.

Time complexity. The number of iterations is the number of edges in the tree which is n− 1.
We have to show that every iteration is completed in O(n) time.

Maintain a list of candidate edges: ∀w < V (T ) is the candidate edge K (w) the minimum
edge betweenw and V (T ). In the general case we add the minimum edge K (w) ∀w < V (T )
(T = T + k (w)).

Definition 11. |V (G) \ V (T ) | = O(n) can be computed in O(n) time.

Update of candidate edges: If vk was added toT in the last iteration then compare c(vk ,w),c(k (w))
and if c(vk ,w) < c(k (w)) then k (w) = (vk ,w). This requires O(n) time.

Theorem 12. Is Prim’s algorithm implemented with Fibonacci-Heaps we can solve the MST
problem in O(m + n log n) time.

O(n2) O(m + n log n) m = θ(n2) G is dense

A proof for Theorem 12 is not provided.

6 Number of spanning trees

This lecture took place on 9th of Oct 2014.

Theorem 13. (Arthur Cayley) The complete graph Kn has nn−2 spanning trees.

14



Proof. (J. Pitman, Coalescent random forests, Journal of Combinatorial Theory A 85, 1999,
165–193) Double-counting approach counting the number of labelled rooted trees (LRT). In
labelled trees every edge has a label. Two LRTs are equivalent if and only if their tree structure
is the same and labels are equivalent.

1. Let τ(n) be the number of spanning trees in Kn . Every tree can have n root candidates
and (n− 1)! labels. In conclusion we can create n · (n− 1)! · τ(n) LRTs with n vertices.

2. Insert edges successively such that adding n− 1 vertices creates a LRT. For one edge we
have . . .

2 ·
n(n − 1)

2
= n(n − 1) possibilities

We added k edges (k < n− 1). Followingly the graph has n− k connected components
with n1,n2, . . . ,nm−k vertices each. Every connected component is a LRT. If the k+ 1-
th edge to be added starts at component 1, then this edge must have the root as source.
This edge can have every other vertex as destination. There are n − n1 possible such
edges. In total we start with an arbitrary component and get:

(n − n1) + (n − n2) + . . . + (n − nn−k ) = n(n − k) − n

This is the number of possilities for edge k + 1. In total for all n − 1 edges to add:

n−2∏
k=0

(n · (n − k) − n) =
n−2∏
k=0

n(n − k − 1︸    ︷︷    ︸
1≤t≤n−1

) = nn−1(n − 1)

It holds:
n(n − 1)!δ(n) = nn−1(n − 1)!⇒ δ(n) = nn−2

�

6.1 Minimum Weight Arborescence Problem (MWA)

Given. Digraph G = (V,E),c : E(b) → R

Find. Spanning arborescence with minimum weight or claim @ spanning arborescence in G

6.2 Minimum Weighted Rooted Arborescence Problem (MWRA)

Given. Digraph G = (V,E),r ∈ V (G),c : E(G) → R

Find. Spanning arborescence with root r and with minimum weight in G or claim @ span-
ning tree with root r in G

6.3 Maximum Weighted Branching Problem (MWB)

Given. Digraph G = (V,E),c : E(G) → R

Find. Branching B with maximum weight

15



6.4 Equivalence of MWA, MWRA and MWB

Hypothesis 14. The three problems MWA, MWRA and MWB are equivalent.

Partially the proof is given in the practicals.

Proof. We assume without loss of generality that c(e) ≥ 0 ∀ e ∈ E(G) because negative
edges cannot occur in a maximum branching.

deg−(v) ≤ 1 ∀ v ∈ V (G)

Greedy approach: ∀ v ∈ V (G) select one ev ∈ argmax{c(e) : e = (x,v) ∈ E(G)} let
B := {ev : v ∈ V (G)}.

If B0 is cycle-free: B0 is branching with maximum weight. Otherwise cycles have to be
avoided / destroyed.

Theorem 15. Let B0 be a subgraph of G with maximum weight and deg−B0
(v) ≤ 1 ∀ v ∈

V (G). Then∃ an optimal branching B ∈ G with properties ∀ cycle C ∈ B0 : |E(C) \ E(B) | =
1.

Proof. Assumption. Such an optimal branching B does not exist.

Let B be a maximum branching in G with maximum number of common edges with B0.
Let C be a cycle in B0 with |E(C) \ E(B) | ≥ 2.

E(C) \ E(B) = {(a1,b1), (a2,b2), . . . , (ak ,bk )}
in order they appear inside the cycle.

Hypothesis 16.
∀ 1 ≤ i ≤ k∃bi − bi−1 − path in B(b0 ≡ bk )

a1 b1 a2

b2

ak

bk

Figure 4: Red cycle

The existence of a red cycle in B shows a contradiction. �

Consider a fixed i ∈ {1,2, . . . , k}. Let B′i be a subgraph of G with V (B′i ) = V (G) and
E(B′i ) = {(x, y) ∈ B : y , bi} ∪ {(ai ,bi )}. If so, then c(B′i ) ≥ c(B) and thus B′i would
be an optimal branch with one common edge (a,b) more in B0. This is a contradiction.

B′1 is no branching. So there is a cycle in B′i , which contains (ai ,bi ). So a bi -ai -path in B′i is
exists in B. �
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This bi -ai -path does not exist in C. Otherwise he would be forced to use an edge (ai ,bi )
which he is not allowed to do so, because (ai ,bi )@B.

Let e = (x, y) be the last edge of the bi -ai -path which is outside of the cycle. y = bj must
hold because otherwise there are two discharging edges in B, which is a contradiction.

6.5 Edmonds’ branching algorithm (1967)

Algorithm 3 Edmonds’ branching algorithm (book: page 153)
Given. Digraph G, weights c : E(G) → R+
Find. A branching B of G with maximum weight
Remark: α(e,C) is the edge (u,v) inside C, which shares v as destination with e but not u.
ψi (e) is the edge e in the iteration i of the algorithm.

1: Set i := 0,G0 := G,c0 := c.
2: Let Bi be a subgraph of Gi with maximum weight and ���δ

−
Bi

(v) ��� ≤ 1 for all v ∈ V (Bi )
3: if Bi is cycle-free then
4: B := Bi go to 18
5: end if
6: Let C be the set of cycles in Bi . Select one C ∈ C .
7: Let V (Gi+1) := C ∪ (V (Gi ) \

⋃
C ∈C V (C)).

8: for e = (v,w) ∈ E(Gi ) do
9: e′ = (v′,w′) ∈ E(Gi+1)

10: Φi+1(e′) := e where
v′ = C if v ∈ V (C) for C ∈ C and v′ = v if v <

⋃
C ∈C V (C) and

w′ = C if w ∈ V (C) for C ∈ C and w′ = w if w <
⋃

C ∈C V (C).
11: end for
12: Let E(Gi+1) := {e′ = (v′,w′) : e ∈ E(Gi ),v′ , w′} . (parallel edges might occur)
13: for e = (v,w) ∈ E(Gi ) with e′ = (v′,w′) ∈ E(Gi+1) do
14: ci+1(e′) := ci (e) if w′ < C
15: ci+1(e′) := ci (e) − ci (α(e,C)) + ci (eC )

if w′ ∈ C ∈ C where α(e,C) ∈ δ−C (w) and eC is the cheapest edge of C.
16: end for
17: Set i := i + 1 go to 2
18: while i > 0 do
19: B′ := (V (Gi−1),{Φi (e) : e ∈ E(B)})
20: for every cycle C of Bi−1 do
21: if some edge e ∈ δ−B′ (V (C)) exists then
22: E(B′) := E(B′) ∪ (E(C) \ {α(e,C)}) . Delete α(e,C )
23: else
24: E(B′) := E(B′) ∪ (E(C) \ {eC}) . Delete cheapest edge in cycle
25: end if
26: end for
27: B := B′

28: i := i − 1
29: end while

A contraction is the process to replace several vertices C with a single new vertex v′. Handling
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edges must be defined explicitly, but in general it works something like

G′ = (V,
{
(v,v′) | (v,u) ∈ E ∧ u ∈ C

}
∪

{
(v′,v) |, (v,u) ∈ E ∧ v ∈ C

}
).

Theorem 17. Edmonds’ Branching Algorithm is correct and computes the branching of max-
imum weight in O(m · n).

Proof. The algorithm constructs a sequence of graphs G0 = G,G1, . . . ,Gk are edge-weight-
free c0 = c,c1, . . . ,ck until the “greedy solution” in the current Gk is also a branching (Bk ).
Then the algorithm transform this Bk into a branching Bk+1 in Gk successively until G0. It
suffices to show that the transformation of a branching Bi into Bi+1 provides a branching.
With induction it immediately follows that the B0 branching in G0 = G.

Let Bi be a branching in G. We show that the algorithm’s B∗i−1 is an optimal branching in Gi

with ���E(C) \ E(B∗i−1)
���.

The number of cycles C in Bi−1 = 1 (Bi−1 exists according to our previous theorem).

We derive B∗i from B∗i−1 by the constructed cycle of Bi−1. Then B∗i is a branching in Gi .

ci−1(B∗i−1) = ci (B∗i ) +
∑

C′cycle∈Bi−1

(ci−1(C ′) − ci−1(e(C ′)))

ci−1(Bi ) ≥ ci (B∗i )

ci−1(B∗i−1) ≤ ci (Bi ) +
∑

C′cycle∈Bi−1

[
ci−1(C ′) − c(e(C ′))

]
= ci−1(Bi−1)

so Bi is an optimal branching of Gi according to the induction hypothesis.

Runtime analysis. n iterations, O(m) time per iteration �

7 Shortest path problems in graphs

This lecture took place on 13th of Oct 2014.

Given. G = (V,E) is a digraph.

A sequence of vertices v1,v2, . . . ,vk is called edge sequence if (vi ,vi+1) ∈ E(G) ∀ 1 ≤ i ≤
k − 1. A sequence of vertices v1, . . . ,vk such that ∀ e ∈ E(G) there is at most one index
1 ≤ i ≤ k − 1 with e = (Vi ,Vi+1) is called a walk. A walk which does not use any vertex twice
is called path.

We distinguish between inner vertices and end vertices. A path with end vertices u and v is
a u-v-path. Let P = (v1, . . . ,vk ) a v1-v2-path and 1 ≤ i < j ≤ k . Then compute only
(vi ,vi+1, . . . ,v j ) as P[vi,v j ].

A cycle (a path with the same start and end vertex) is a closed path. Let s, t ∈ V (G) then

d(s, t) :=
{

length (number of edges) of the shortest s-t-path in G
+∞ @s − t − path
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If c ∈ E(G) → R

dG (s, t) =
{ ∑

e∈P c(e) where P is the shortest path in G with c
+∞ @s − t − path

7.1 Single source shortest path problems (SSSP)

Given. G = (V,E) is a digraph, c : E(G) → R, s ∈ V (G)

Find. ∀ v ∈ V (G) find a shortest s-t-path in G

Consider a digraph G where c(e) = −1 ∀ e ∈ E(G) and s, t ∈ V (G). The shortest path is
to visit all edges infinitely. A s-t-path has at maximum n − 2 vertices

≥ dG (s, t) ≥ −(n − 1)

dG (s, t) = −(n − 1) ⇔ ∃Hamiltonian s − t-path in G

Detection of Hamiltonian paths is a NP-complete problem.

Definition 18. A weighting w in a graph D is called conservative, if the sum of weights in
every cycle of D is non-negative. In other words:

• @ negative cycles in G.

• Let K be the set of cycles in a graph G. For every cycle C ∈ K , w(C) ≥ 0 holds with
w(C) :=

∑
e∈E (C ) c(e).

• In case of digraphs, directed cycles have to be considered.

Remark. Analogous problem in undirected graphs are in general more difficult that in di-
graphs.

If c(e) ≥ 0 ∀ e ∈ E(G) the graph can be transformed into a digraph.

Theorem 19. Let G be a digraph with conservative weights. c : E(G) → R. Let s,w ∈
V (G) and k ∈ N. Let P be the shortest among all s-w-pathes with at most k edges. Let
e = (v,w) be the last edge of P. Then P[s,w] is the shortest s-v-path with at most (k − 1)
edges.

Proof. We assume ∃ s-v-path Q with c(Q) < c(P[s,v]). Case distinction:

1. w < V (Q). Consider s-w-path P1 as chain of Q with (v,w). Then

c(P1) = c(Q) + c(v,w) < c(P[s,v]) + c(v,w) = c(P)

This is a contradiction.

2.

c(Q[s,w]) = c(Q) − c(Q[w,v]) = c(Q)︸︷︷︸
c (P[s,v])

+c(v,w) − [c(Qw,v ) + c(v,w)]

< c(P)︸︷︷︸
P[s,v] (v,w)

−
(
c(Q[w,v]) + c(v,w)

)︸                      ︷︷                      ︸
cycle K

≤ c(Pc)

We select P because Q[s,w] is shorter than P and has at most k − 1 edges as part of a
s-v-path Q. This is also a contradiction.
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In the following we assume c(e) ≥ 0 ∀ e ∈ E(G).

7.2 Dijkstra’s algorithm for SSSP

Algorithm 4 Dijkstra’s algorithm
Given. G = (V,E) is a digraph. c : E(G) → R+, s ∈ V (G)
Find. A shortest path of s to v, ∀ v ∈ V (G). Let l (v) be the length of a shortest path s − v

in G and p(v), such that p(v) is the predecessor of v of the shortest s-v-path in G provided
by the algorithm ∀ v ∈ V (G). If v is not reachable from j , then l (v) = +∞ and p(v) is not
defined.

1: Let l (s) = 0, l (v) = ∞ ∀ v ∈ V (G) \ {s}, p(s) = 0, R = {}
2: Find v ∈ V (G) \ R with l (r) = min {e(x) : x ∈ V (G) \ R}
3: Let R = R ∪ {v}
4: for w ∈ V (G) \ R with (v,w) ∈ E(G) do
5: if l (w) > l (v) + c(v,w) then
6: {l (w) := l (v) + c(v,w); p(w) = v}
7: end if
8: end for
9: if R , V (G) then go to 2

10: end if

Theorem 20. Dijkstra’s algorithm is correct and can be implemented in O(n2).

Proof. The following statements are invariants of the algorithms:

1. ∀ v ∈ V (G) \{v} with l (v) < +∞ results in p(v) ∈ R, e(p(v))+ c(p(v),v) = l (v)
and v,p(v),p(p(v)), . . . contains 1.

2. ∀ v ∈ R it holds that l (v) = dist(G,c) (s,v).

Why?

• After step 1 of the algorithm, both invariants are inherently satisfied. In step 4 we
update l (w) and p(v) = v for some v ∈ R and also l (u) = l (v)−c(v,w) = l (p(w))+
c(p(w),w). v,p(v), . . . contains s because at the beginning s was the only vertex with
e(. . . ) < ∞.

• s ∈ R holds c(s) = 0 = C(shortest path). Induction over |R |

induction base R = {s} (trivial).
induction step Statement is satisfied until the execution of step 3. We have to show

that the statement holds after step 3. We assume that this statement is not satis-
fied. Then for v in step 3 there is some s-v-path P in G with c(P) < l (v). Let y
be the first vertex in P which is part of (V (G)\R)∪{v} and x is the predecessor
of y in P. Then it holds x ∈ R in P. From the induction assumption if follows
that destG,C (s, x) = l (x).

l (y) ≤ l (x) + c(x, y) = destG,C (s, x) + c(x, y) ≤ c(P[s,y]) ≤ c(P) < l (v)
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This is a contradiction. Directly after R = R ∪ {x} it holds that after execution
of step 4 of the algorithm l (y) = l (x) + c(x, y). Followingly l (x) does not
change any more because x ∈ R and l (y) can only be reduced.

�

7.2.1 Analysis

O(n2) because we have n iterations and an effort of O(n) per iteration.

Theorem 21. (Fredman and Tarjan, 1987) A Fibonacci-Heap implementation of Dijkstra’s
algorithm runs in O(m + n log n) time.

A proof for Theorem 21 is not provided.

For planar graphs Dijkstra’s algorithm can be implemented with O(n) time (Henzinger,
1997). For weights of integers ≥ 0 it can be implemented in O(n) (Thomp, 1999).

7.3 Moore-Bellman-Ford algorithm

Algorithm 5 Moore-Bellman-Ford algorithm
Given. A digraph G = (V,E), conservative c : E(G) → R, s ∈ V (G)
Find. l (v),p(v) like Dijkstra’s algorithm ∀ v ∈ V (G)

1: l (s) := 0, l (v) := ∞ ∀ v ∈ V (G) \ {s} p(s) = 0
2: for i = 1 to n − 1 do
3: for (u,w) ∈ E(G) do
4: if l (w) > l (u) + c(u,w) then
5: l (w) := l (u) + c(u,w)
6: p(w) := u
7: end if
8: end for
9: end for

7.3.1 Analysis

Theorem 22. The Moore-Bellman-Ford algorithm is correct and has runtime O(nm).

We have O(n) iterations and need O(m) time per iteration.

This lecture took place on 14th of Oct 2014.

Proof. Let R := {v ∈ V (G) : l (v) < +∞} and F := {(x, y) ∈ E(G) : x = p(y)}. The
following statements are invariants of the algorithm (even for non-conversative weights):

1. l (y) ≥ l (x) + c(x, y) ∀ (x, y) ∈ F

2. If F contains a cycle K , then K has a negative weight c(K ) < 0.
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Assumption. A cycle K in F is created by insertion of edge (x, y). At this point in time
p(y) = x will be set in the second step. Before l (y) = l (x) + c(x, y) was set because
previously it holds that l (y) > l (x) + c(x, y) ∀ (v,w) ∈ F and l (w) ≥ l (v) + c(v,w).

vn+1

= x = v11

vn

v2

Figure 5: Cycle creation by edge insertion

n∑
i=1

l (vi ) = l (vi ) +
n∑

i=1, i,2
l (vi ) + c(v1,v2) =

n∑
i=1, i,2

[l (vi ) + c(vi ,vi+1)]

⇔

n∑
i=1

l (vi ) >
n∑
i=1

l (vi ) +
n∑
i=1

c(vi ,vi+1)

⇔ C(k) =
n∑
i=1

c(vi ,vi+1) < 0

Hence if c is conservative, then F is cycle-free.

x ∈ R⇒ l (x) < ∞ ⇒ l (p(x)) < ∞ ⇒ p(x) ∈ R

⇒ p(p(x) ∈ R) until s

Followingly ∀ x ∈ R∃ some s-x-path in (R,F) and F is cycle-free. We conclude that (R,F)
is some arborescence with root s.

Hypothesis 23. After k iterations the length (sum of weights) of the shortest s-x-path with
at most k edges is at least l (x) ∀ x ∈ R.

We prove it by induction over k . Let Ps,x be the s-x-path in (R,F).

l (x) ≥a l (p(x)) + c(p(x), x) ≥a l (p(p(x))) + c(p(p(x)),p(x)) + c(p(x), x)

≥a . . . ≥a l (s) +
∑

e∈Ps,x

c(e) = c(Ps,x ) ∀ x ∈ R

Induction base. For k = 1 all edges start at the same vertex.

l (v) = l (s) + c(s,v) thus l (v) = c(s,v) ∀ v with l (v) < ∞
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Induction step. Assumption. Assumption holds after k iterations.
Show. Assumption holds after k + 1 iterations.
Let P be a shortest s-v-path with at most k + 1 edges. Let (w, x) be the last edge in P.
From the proposition 19 (every subpath of the shortest path is also a shortest path) it
follows that P[s,w] is the shortest s-w-path with at most k edges.

l (w) ≤ c(P[s,w])

Iteration k + 1 will also analyze (w, x). Followingly it must hold that

l (x) ≤ l (w) + c(w, x) ≤ c(P[s,w]) + c(w, x) = c(P)

From the proofs of both previous assumptions we conclude that at termination it
holds that

l (x) = length of the shortest s-x-path with at most (n − 1) edges

= length of the shortest s-x-path (conservative!)

Remark. (R,F) is the so-called “shortest paths tree”.

�

8 Potential

Definition 24. Let G = (V,W ) be a digraph with c : E → R.

A mapping π : V (G) → R with c(u,v) + π(u) − π(v) ≥ 0 ∀ (u,v) ∈ E(G) is called
“potential”.

Theorem 25. Let G be a digraph with c : E(G) → R. A potential of (G,c) exists iff c is
conservative.

Proof.
⇒ ∃ potential π ⇒ c is conservative

Let k be a cycle

c(k) =
∑

e∈E (k )

c(e) =
l∑
i=1

c(vi ,vi+1) =
l∑
i=1

[c(v,vi+1) + π(vi ) − π(vi+1)] ≥ 0

⇔ c is conservative ⇒ ∃ potential π

Apply Moore-Bellman-Ford algorithm to (G, i) where V (G) = V (G) ∪· {s} and E(G) =
E(G) ∪ {(s,v) : ∀ v ∈ V (G)}.

c(e) =
{

c(e) e ∈ E(G)
0 e = (s,v) ∀ v ∈ V (G)

}

Let l (v) ∀ v ∈ V (G) be the output.
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c(v,w) + l (v) − l (w) ≥ 0

l (w) ≤ l (v) + c(v,w)

�

Remark. The Moore-Bellman-Ford algorithm (as shown above) can be used to determine
whether c is conservative and possibly to compute a potential.

Theorem 26. Let G = (V,E) be a digraph with c : E(G) → R. The Moore-Bellman-Ford
algorithm can either determine a desired potential or find a negative cycle in O(m · n) .

Proof. We apply Moore-Bellman-Ford algorithm to (G, i) as shown above and retrieve l (v) ∀ v ∈
V (G).

If l is a potential, we are done.

Otherwise ∃(u,w) ∈ E(G) with c(u,w) + l (u) < l (w) ⇒ l (u) was changed in the last
iterations⇒ l (p(u)) was changed in the last 2 iterations⇒ l (p(p(u))) was changed in the
last 3 iterations. It holds that the length l (. . .) of each of these vertices was changed while the
algorithm was running.

w,u,p(u),p(p(u)),p(p(p(u))), . . .

Because e(s) was not changed, {w,n,p(u), . . . ,p(. . . p(u) . . .)} must contain a cycle. K in
F⇒ c(k) < 0 from invariant of b of the previous proof 3.3. �

9 All Pairs Shortest Paths Problem

9.1 All pairs shortest paths problems (APSP)

Given. G = (V,E) is a digraph. Weights c : E(G) → R are conservative

Find. Find numbers ls, t and vertices ps, t ∀ s, t ∈ V (G) such that ls, t is the length of a
shortest s-t-path in G and (ps, t , t) is the last edge of the shortest path.

This is solvable with n repetitions of the Moore-Bellman-Ford algorithm for each vertex:
O(n2 · m) runtime or find potential π with Moore-Bellman-Ford algorithm

c(u,v) := c(u,v) + π(u) − π(v) ≥ 0 ∀ (u,v) ∈ E(G)

For every s-x-path P in G it holds that

c(P) =
l−1∑
i=1

c(vi ,vi+1) =
l−1∑
i=1

[c(vi ,vi+1) + π(vi ) − π(vi+1)]

=

l−1∑
i=1

c(vi ,vi+1) + (π(v1) − π(v2) + π(v3) + . . . + π(vl−1 − π(vl )))

= c(P) = π(vi ) − π(vi ) = c(P) + π(s) − π(v)
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min C(P) = min
P:s-x-path

[E(P) − π(s) + π(x)]

= min
P:s-x-path

C(P) + π(x) − π(s)

Apply Dijkstra’s algorithm with (G,c) for every vertex: O((m + n log n) · n) (best known
complexity).

9.2 Floyd-Warshall algorithm

Algorithm 6 Floyd-Warshall algorithm
Given. G = (V,E) is a digraph, c : E(G) → R is conservative, n = |V (G) |
Find. Matrices (li, j )1≤i, j≤n and (pi, j )1≤i, j≤n where li, j and pi, j

1: Let li, j := ci, j ∀ (i, j) ∈ E(G)
2: li, j := +∞ ∀ (i, j) ∈ (V (G) × V (G)) \ E(G) with i , j
3: li, i = 0 ∀ i ∈ V (G)
4: pi, j := i ∀ (i, j) ∈ V (G)
5: for j = 1 to n do
6: for i = 1 to n do
7: if i , j then
8: for k = 1 to n do
9: if k , i ∧ k , j then

10: if (li,k > li, j + l j,k ) then
11: li,k := li, j + l j,k
12: pi,k := pj,k

13: end if
14: end if
15: end for
16: end if
17: end for
18: end for

Theorem 27. The Floyd-Warshall algorithm works correctly and has a runtime of O(n3)

Proof. Proving O(n3) is trivial.

After execution of the most-outer loop j it holds that ∀ i, k : li,k is the length of the shortest
i-k-path whose inner vertices are from {1,2, . . . , j0} and where (pi,k , k) is the last edge.

Induction over j0.

Induction base. j0 = 0 means considering only paths without inner vertices

Induction step.
Assumption. Hypothesis holds for j0 ∈ {1,2, . . . ,n − 1}
Show. Hypothesis holds for j0 + 1. Execute outer loop with j = j0 + 1

li,k > li, j0+1 + l j0+1,k ⇒ li,k = li, j0+1 + l j0+1,k ,Pi,k = Pj0+1,k
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If Pi, j0+1 and Pj0+1,k are vertex-disjoint the assumption holds. But Pi, j0+1 and Pj0+1,k can
only be vertex-disjoint otherwise we will get a contradiction.

Assumption. P and Q are not vertex-disjoint.

Remove the maximum (= inclusive maximal) closed walk from P∪Q. This walk has weight
≥ 0 (as union of cycles with c are conservative). Maintain a i-k-path R with inner vertices
from {1,2, . . . , j0} and it holds that

C(R) + C(closed walk) = li, j0+1 + l j0+1,k ⇒ C(R) ≤ li, j0+1 + l j0+1,k < li,k

�

10 Cycles with minimum mean edge weight

This lecture took place on 21st of Oct 2014.

10.1 Minimum mean-cycle problem (MMC)

Given. Digraph Gi ∈ t(G) → R.

Find. Cycle k with mean edge weight minimizing

c(E(k))
|E(k) |

or decide “A is acyclic”

Remark. G is strongly connected⇔

∀u,v ∈ V (G) u , v

∃directed u-v-path and ∃ directed u-v-path

Strongly connected components can be computed inO(n+m) with any searching algorithm
in G. Without loss of generality: G is strongly connected, otherwise solve MMC in every
strongly connected component.

Let s be a vertex in G such that ∃ s-v-path ∀ v ∈ V (G).

Theorem 28 (Karp 1978). Let G be a digraph with c : E(G) → R. Let s ∈ V (G) such that
∀ v ∈ V (G) \ {s}∃ directed s-v-path in G.

∀ x ∈ V (G) ∀K ∈ Z+ :

FK (x) := min



k∑
i=1

c(vi−1,vi ) : v0 = s,vk = x, (vi−1,vi ) ∈ E(G), ∀ 1 ≤ i ≤ k



If there is no sequence of edges of length k from s to x, then FK (x) = ∞. Set µ(G,c) be
the minimum mean edge weight of a cycle in (G, i) and µ(G,c) = ∞ if G is acyclic. Then it
holds that

µ(G,c) = min
x∈V (G)

max
0≤k≤n−1

Fn (x) − Fk (x)
n − k
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Proof. 1. If G is acyclic, µ(G,c) = ∞.

Hypothesis 29.

∀ x ∈ V (G) : max
0≤k≤n−1

Fn (x) − Fk (v)
n − k

= ∞

Proof by contradiction.

∃x ∈ V (G) with max
0≤k≤n−1

Fn (x) − Fk (x)
n − k

< ∞

⇔ Fn (x) is finite

⇒ edge repetition in order defined by Fn (x)

This constitutes a cycle and we have a contradiction.

2. G is cyclic.

(a) µ(G,c) = 0⇒G does not have negative cycles. So c is conservative.

⇒ Fn (x) ≥ dist(G,c) (s, x) = min
0≤k≤n−1

Fk (x) = Fk0 (x)

⇒ max
0≤k≤n−1

Fn (x) − Fk (x)
n − k

≥ 0 ∀ x ∈ V (G)

We show ∃x ∈ V (G) with

max
0≤k≤n−1

Fn (x) − Fk (x)
n − k

= 0 =
Fn (x) − FK0 (x)

n − k

⇒ Fn (x) = FK0 (x) = dist(s,x) (G,c)

Let K be any cycle with G)K = ∞ in G and v is an arbitrary vertex in K . Let P be
a shortest s-x-path in (G,c); c is conservative. Let P′ be an edge sequence which
starts with P and ends with n repetitions of K : e(P′) = c(P) = dist(G,c) (1, x).
Let P′′ be a subset of edges of P′ which has exactly n edges. Let w be the final
vertex of P′′. Because P′ is a shortest edge of s to x⇒ P′′ is the shortest edge
sequence of s to w with n edges.

Fn (w) = dist(G,c) (s,w)

(b) µ(G,c) , 0. Consider c : E(G) → R with c′(e) = c(e) − µ(G,c) ∀ e ∈
E(G).

µ(G,c′) = min
cycle K in G

c′(E(k))
|E(k) |

= min
cycle K in G

c(E(k)) − |E(k) | · µ(G,c)
|E(k) |

= min
cycle K

{
c(F (K ))
|E(K ) |

− µ(G,c)
}

µ(G,c′) = min
cycle K in G

c(E(k))
|E(k) |

− µ(G,c) = µ(G,c) − µ(G,c) = 0

27



Let F ′
k

(x) be analogous to Fk (x) but computed with weights c′. It holds that
F ′K (x) = FK (x) − K µ(G,c) ∀ x ∀0 ≤ k ≤ n.

µ(G,c′) = min
x

max
0≤x≤n−1

F ′n (x) − F ′
k

(x)

n − k

= min
x

max
0≤k≤n−1

(Fn (x) − nµ(G,c)) − (Fk (x) − kµ(G,c))
n − k

= min
x

max
0≤k≤n−1

Fn (x) − Fk (x)
n − k

− µ(G,c)

�

10.2 Algorithm for minimum mean cycle problem

Algorithm 7 Minimum mean-cycle algorithm
Given. Digraph G, c : E(G) → R
Find. Cycle K with c(k) = µ(G,c) or “G is acyclic”

1: Insert s < V (G) and all edges ∀ v ∈ V (G) : (s,v). Let c(s,v) = 0 ∀ v ∈ V (G). Let
G′ be this extended digraph.

2: Let n = |V (G′) | ,F0(s) = 0,F0(x) = ∞ ∀ x ∈ V (G′) \ {s}.
3: for k = 1 to n do
4: for all x ∈ V (G) do
5: FK (x) := ∞
6: for all (w, x) ∈ δ−(x) do
7: if FK−1(w) + c(w, x) < FK (x) then
8: FK (x) := FK−1(w) + c(w, x)
9: PK (x) := w

10: end if
11: end for
12: end for
13: end for
14: if Fn (x) := ∞ ∀ x ∈ V (G′) \ {s} then
15: return “G is acyclic”
16: end if
17: Let µ∗ = minx∈V max0≤k≤n−1

Fn (x)−Fk (x)
n−k and u its corresponding x

18: Let K be a cycle which is contained in the sequence

u, Pn (u), Pn−1(u), Pn−1(Pn (u)), Pn−2(Pn−1(Pn (u))), . . .

19: return K and µ∗

Theorem 30. The minimum mean cycle algorithm works correctly and can be implemented
with a runtime of O(n ·max {m,n}).

Proof. In G′ there are only cycles contained which are also in G contained (there are no edges
with end vertex s). So it is enough to prove that µ(G′,c) is correctly computed.

1. In steps 2 and 3, FK (x) ∀0 ≤ k ≤ n is computed correctly (proof is analogous to
proof of Bellman-Ford-algorithm).
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2. If algorithm terminates in step 4, then G is acyclic. Otherwise ∃x ∈ V (G) where
Fn (x) is finite⇒ no termination in step 4.

3. Consider (G′,c′) with c′(e) = c(e) − µ(G,c) ∀ e ∈ E(G). Algorithm runs with
(G′,c′) exactly the same like (G,c) only with F ′

k
(x) = Fk (x) − µ(G′,c) ∀ x ∀ k .

4. If we select some x in step 5, then µ(G′,c′) = 0 = max0≤k≤n
Fn (x)−FK (x)

n−k is satisfied
(follows from Karp’s theorem). So Fn (x) = dist(G′,c′) (s, x).

5. So every shortest edge sequence of n edges from s to x consists of a shortest s-x-path
and a few cycles of length 0. The “last” cycle K will be found in step 5. It holds that

c′(E(k))
|E(k) |

= µ(G′,c′) = 0⇒
c(E(k))
|E(k) |

= µ(G′,c)

�

11 Network flows

11.1 Definition

A network with source s and sink t is a quadruple (G,u, s, t) where

1. G is a digraph

2. u : E(G) → R+

3. s, t ∈ V (G) with s , t

A flow f is a function f : E(G) → R+ with f (e) ≤ u(e) ∀ e ∈ E(G). An excess of a flow
f in a vertex v is

ex f (v) :=
∑

e∈δ− (v)

f (e) −
∑

e∈δ+ (v)

f (e) ∀ v ∈ V (G)

The flow conservation condition in V ∈ V (G) is ex f (v) = 0. A flow f with ex f (v) =
0 ∀ v ∈ V (G) is called circulation. A s-t-flow is a flow with ex f (s) ≤ 0 and ex f (v) =
0 ∀ v ∈ V (G) \ {s, t}. The value of a s-t-flow f is value( f ) := − ex f (s).

11.2 Maximum flow problem (MF)

Given. network (G,u, s, t) with source s and sink t

Find. a s-t-flow with maximum vale

11.3 Example: Job assignment problem

Given. n jobs, n workers, Si ⊆ {1,2, . . . ,m} is the set of workers which complete job i ∀ i ∈{1,2, . . . ,n}. ti is the time it takes to complete job i ∀ i ≤ i ≤ n.
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Find. Which part of which jobs should be complete by which worker to achieve maximum
efficiency?

Additional assumption:

1. All workers are equally efficient.

2. One job at a time per worker.

3. Jobs can have multiple simultaneous workers.

…
…

s t
t4

t3

t2

t1

i

j

j ∊ Si

T
T
T
T

T

Figure 6: Job assignment problem

We create a graph with three layers. We have one source which is connected to every job.
Every job is connected to every worker that can complete this job. All workers are connected
to one destination t.

u((s, i)) = ti i ∈ {1,2, . . . ,n}
u((i, j)) = T ∀ i, j with j ∈ Si

u( j, t) = T ∀ j ∈ {1,2, . . . ,n}
where T is a configuration parameter.

Assuming fT is the maximum flow from s to t in (G,u, s, t). If value( fT ) =
∑n

i=1 ti . We
claim: If worker j completes portion f (i, j) of job j ∀i, j then all jobs are completed within
time T

[0,Tmax]
∑

ti = Tmax

This lecture took place on 27th of Oct 2014.

Assignment:
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1. Worker j should complete f i, j units of work of the i-th job ∀ i ∀ j .

value ( f ) =
n∑
i=1

ti ⇒ f (s, i) = ti ∀ job i

⇒︸︷︷︸
flow conservation condition

∑
j ∈Si

f i, j = f (s, i) = ti

hence job i will be complete ∀ i.

2. Why is everything completed in time (ie. ≤ T )?

∀worker j :
∑

i, j ∈Si

f (i, j)︸        ︷︷        ︸
total working time of worker i

= f ( j, t) ≤ T

11.4 Maximum-flow problem (cont.)

Linear programming definition of the maximum-flow problem

Given. A network (G,u, s, t). Let xe be the flow carried by edge e in the network ∀ e ∈
E(G) with 0 ≤ xe ≤ ue .∑

e=(i,v)

xe −
∑

e=(v, j )

xe = 0 ∀ v ∈ V (G) \ {s, t}

Find. Compute the maximum flow
∑

e∈δ+ (s) xe −
∑

e∈δ− (s) xe .

We are looking for a combinatorial solution.

Remark. MFP is polynomially solvable as linear program eg. via ellipsoid method.

Theorem 31. MFP always has an optimal solution. Linear programming always provides an
optimal solution and is limited by

∑
e∈E (G) ue .

Definition 32. A s-t-cut in G is an edge set δ+(X ) with X $ V (G), s ∈ X, t < X . The set
of all edges going from X to Xc .

The capacity of δ+(x) is u(δ+(x)) :=
∑

e∈δ+ (x) ue . A minimum s-t-cut is a s-t-cut with
smallest possible capacity.

Theorem 33. ∀A $ V (G) with s ∈ A, t < A and for every s-t-flow it holds that:

1. value ( f ) =
∑

e∈δ+ (A) f (e) −
∑

e∈δ− (A) f (e)

2. value ( f ) ≤
∑

e∈δ+ (A) ue

Proof. • Firstly,

value( f ) =
∑

e∈δ+ (s)

fe −
∑

e∈δ− (s)

fe =
∑
v∈A

*......
,

∑
e∈δ+ (v)

fe −
∑

e∈δ− (v)

fe︸                      ︷︷                      ︸
=0 ∀ v,s

+//////
-
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=
∑

e∈δ+ (A)

fe −
∑

e∈δ− (A)

fe

All edges in A (that stay in A) cancel each other out (incoming = +1, outgoing = −1).

• Secondly, ∑
e∈δ+ (A)

fe −
∑

e∈δ− (A)

fe ≤
∑

e∈δ+ (A)

ue = u(δ+(A))

�

Remark. From theorem 33 (2) it follows that

max {value( f )}︸             ︷︷             ︸
f: s-t -flow

≤ min u(δ+(A))︸           ︷︷           ︸
A: s-t -cut

Definition 34. (dt. “Inkrementnetzwerk”, residual network) Assume a network (G,u, s, t)
and a s-t-flow f . Define the set of edges as a multiset:

←→
E = {e : e ∈ E(G)} ∪ {

←−e := ( j, i) : (i, j) ∈ E(G)
}

In words “all edges and edges in opposing directions including duplicates”. We now consider
the new graph

←→
G = (V (G),

←→
E )

G f := (V (G),
{

e ∈
←→
E : u f (e) > 0

}
)

where u f (e) is remaining capacity defined as

u f (e) =
{

ue − fe e is edge in forwards direction
f←−e e is edge in direction backward ( f←−e = fe )

(G f ,u f , s, t) is then called “residual network”.

Remark. 2→ 1 was not introduced in G f , because u f = 0

A directed s-t-path in G f is called augmented path.

How do you augment a path?

f ′(e) =



f (e) + δ e ∈ P ∩ E+

f (e) − δ e ∈ P ∩ E−

f (e) e < P

f ′ := f ⊕ P with δ := min
e∈E (P)

u f (e)

f ′ is called augmented path along P.

P ∩ E+ forward edge in path
P ∩ E− backward edge in path

Show:
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Figure 7: Residual network

1. f ′ is a flow

2. value( f ′) = value( f )

Let e ∈ P ∩ E+.
0 ≤ f ′(e) ≤ u(e)

0 ≤ f (e) + δ ≤ u(e)

0 ≤ f (e) + δ ≤ fe + ue − f (e)

Let e ∈ P ∩ E ′−.

0 = f (e) − f (e) ≤ f ′(e) = f (e) − δ ≤ u(e)

value( f ′) =
∑

e∈δ+ (s)

f ′(e) −
∑

e∈δ− (s)

f ′(e) = f ′(e0) +
∑

e∈δ+ (s)

f ′(e) −
∑

e∈δ− (s)

f ′(e)

Let ee ∈ δ−(s) ∩ P = value( f ) + δ > value( f ).

Flow augmented by δ along path P such that the value increases.

Remark. If f is a max s-t-flow, then there is no s-t-path in G f . If there would be a s-t-path
P then f ′ = f ⊕ P is better than f (contradiction).

Theorem 35. Let (G,u, s, t) be a network and f be a flow. If there is no s-t-path in G f , then
f is optimal. Hence value( f ) is at maximum.
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Proof. Let A =
{
v ∈ V (G) : v is reachable from s in G f

}
. A defines a cut between a set A

containing s and a set B containing t with t < A. An edge on the border of those sets must
satisfy f (e) = u(e) (saturating edge), otherwise u(e) − f (e) > 0 and the edge would be
part of G f .

A defines a s-t-cut δ+(A).
u(δ+(A)) =

∑
e∈δ+ (A)

ue

value( f ) = . . .︸︷︷︸
theorem 33 (a)

=
∑

e∈δ+ (A)

f (e) −
∑

e∈δ− (A)

f (e)

So this end going from set B to set A has f (e) = 0 otherwise←−e is in G f . It follows that
u(δ+(A)) = value( f ).

So f is optimal (assumption that cut ≥ flow, hence equality, won’t get better) �

Theorem 36 (Max flow, min cut theorem, Ford & Fulkerson, 1956). Let (G,u, s, t) be a
network than there exists a maximum s-t-flow f and a minimum cut (s-t-cut) δ+(A) with
value( f ) = u(δ+(A)). Especially the value of a maximum flow and the capacity of a mini-
mum s-t-cut is equal.
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Figure 9: f ′ is a flow

11.5 Algorithm by Ford & Fulkerson

Proof. Directly follows from theorems 33 and 35. �

Algorithm 8 Algorithm by Ford & Fulkerson
Given. G,u, s, t
Find. max s-t-flow

1: Set f (e) = 0 ∀ e ∈ E(G)
2: while ∃ s-t-path P in G f do
3: f = f ⊕ P
4: end while
5: return f

As a result many steps are required. Better paths would be (s,2, t) or (s, 1, t) instead of using
1–2.

Conclusions of F&F algorithm

If u0 ∈ Z+ then F&F algorithm terminates. After at most U (|V (G) | − 1) iterations, where
U = maxe∈δ+ (s) ue , because

1. Firstly
value( f ) ≤

∑
e∈δ+ (s)

f (e) ≤
∑

e∈δ+ (s)

U ≤ U · (|V (G) | − 1)

2. Secondly the flow value is increased by δ in every iteration; where δ ≥ 1 because δ > 0
and δ ∈ Z.

If ue ∈ Q+ then affiliation to ue ∈ Z+ (multiply all capacities with common denominator).
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Figure 10: Ford & Fulkerson algorithm

If u0 ∈ Q+ then F&F algorithm must not terminate. It also must not converge and if it does
converge, it must not converge towards optimality. So the algorithm might create a series fn
with valuen→∞( f ) 9 opt.

In the algorithm the series converges only if it converges towards optimality.
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This lecture took place on 28th of Oct 2014.

11.5.1 Analysis

Runtime per iteration: O(n) determination of a s-t-path
(eg. breadth-first search) if such one exists

Number of iterations: O(U (n − 1)) = O(Un)

Total runtime (for ue ∈ Z+ ∀ e ∈ E(G) :

O(mnU)

pseudo-polynomial runtime

Theorem 37 (Flow decomposition theorem, Galler 1956, Ford and Fulkerson 1962). Let (G,u, s, t)
be a network and f be a s-t-flow. Then ∃ a family P of s-t-paths and a family C of cycles in
G and the weights in P ∪ C → R+ (P 7→ w(P),C 7→ w(C)) such that

f (e) =
∑

P∈P∪C :e∈E (P)

w(P) ∀ e ∈ E(G)

value( f ) =
∑
p∈P

w(P) and |P | + |C | ≤ |E(G) |

Proof. Induction on number of flow-carrying edges, ie. |e ∈ E(G) : f (e) > 0 |.

Hypothesis 38. No flow-carrying edge: trivial (select some s-t-path and sort by value)

Induction step.

Let i = 0 and (V0,w0) ∈ E(G) otherwise f (v0,w0) > 0. If w0 , t∃(w0,w1) ∈ E(G) with
f (w0,w1) > 0. If w1 < {t,v0,w0} then i = i + 1 and repeat this step until t is reached or
some vertex is repeated (cycle case).

Analogously you can think of (v1,v0) ∈ E(G) with f (v1,v0) > 0. If v1 < {s,v0,w0,w1, . . . ,wk}
then repeat the step until s is reached or some cycle gets created.

This construction provides either a flow-carrying s-t-path P or a flow-carrying cycle C. Case
distinction:

1. w(P2) = minl ∈E (P0) f (e) and

f (e) =
f (e) − w(P) e ∈ E(P),∀e ∈ E(G)
f (e) e < E(P)∀e ∈ E(G)

2. w(C2) = mine∈E (C ) f (e) analogously.

f ′ is a s-t-flow with at least one flow-carrying edge less. With the induction hypothesis f ′

can be decomposed, hence ∃P1(C1) family of s-t-paths (cycles) and w : P1 ∪C1 → R+ with
f ′(e) =

∑
P∈P1∪C1,e∈E (P) w(P) and value( f ′) =

∑
p∈P1 w(P) and |P1 ∪ C1 | ≤ E(G).
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Figure 11: Flow decomposition theorem

1.
P := P1 ∪ {P0} ,C := C1

f (e) = f ′(e) + w(P0)︸                      ︷︷                      ︸
if e∈E (P)

=
∑

P∈P1∪C1,e∈E (P)

w(P) + w(P0) =
∑

P∈P∪C,e∈E (P)

w(P)

2.
P := P1,C := C1 ∪ {C0} with corresponding weights

value( f ) = value( f ′) + w(P0) =
∑
P∈P1

w(P) + w(P0) =
∑
P∈P

w(P)

3. |P ∪ C | ≤ |E(G) | because the induction step will be executed at most |E(G) | times.
In every step a new non-flow-carrying edge is created and in every step i (Pi ∪ Ci ) is
incremented by one and we can start with P ∪ C = ∅ for flow f ≡ 0.

�

11.6 Edmonds and Karp algorithm (E&K)

This algorithm distinguishes from F&F only by the selection of the s-t-path: In every itera-
tion i a shortest s-t-path Pi in G fi is selected (shortest in terms of number of edges).

Theorem 39. Let f0, f 1, . . . , fk , . . . be a sequence of flows created by the E&K algorithm,
where f i+1 = f i + Pi and Pi is a shortest s-t-path in G fi ∀ i. Then it holds that

• |E(Pk ) | ≤ |E(Pk+1) | ∀ i

• |E(Pk ) + z ≤ |E(Pr ) | | for all k < r such that Pk ∪ Pr contains at least one pair of
edges of opposing direction.

Proof. 1. Let Gk := (V,Ek ) where Ek = Pk∪Pk+1\
{

pairs of edges in opposing direction
}

.
It holds that Ek ⊆ E(G fk ) (where G fk is an incremental network to fk ), because
Pk ∪ Pk+1 ⊆ E(G fk ) : Pk ⊆ E(G fk ) is obvious.
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Algorithm 9 Edmonds and Karp algorithm
Given. G,u, s, t
Find. max s-t-flow

1: Let f (e) = 0 ∀ e ∈ E(G)
2: Determine a shortest f -augmenting path P
3: if P does not exist then
4: return f
5: end if
6: Determine γ = mine∈E (P) u f (e). Augment f along P by γ
7: go to 2
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Figure 12: Drawing for EK algorithm
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Figure 13: Drawing for EK algorithm
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Assumption. ∃e ∈ Pk+1 \ E(G fk ) : e ∈ E(G fk+1 ). Hence e was added to the
incremental network in the k-th iteration.

2. So e is an edge of opposing direction of an edge of Pk . This is a contradiction because
e < Ek . So Ek ⊆ E(G fk ) holds.
Add two artificial edges (t, s) to Ek (Gk = (V,Ek )) and retrieve Ḡk . Ḡk is eulerian
(in a directed sense), ie. deg−

Ĉk
(v) = deg−

Ĉk
(v) ∀ v. ⇒ Ĝk can be decomposed into

edge-disjoint cycles. Let C1(C2) be the cycles that contain the artificial edges 1 and 2.
Let P1 and P2 be the edge-disjoint s-t-paths in those cycles C1 and C2.
P1 and P2 are in Ĝk and do not require any artificial edges.

P1 and P2 ∈ E(Gk ) ⊆ E(G fk )

2 |E(Pk ) | ≤ |E(P1) | + |E(P2) |

≤ |E(Gk ) | ≤ |E(Pk ) | + |E(Pk+1) |

⇒ |E(Pk ) | ≤ |E(Pk+1) |

3. It suffices to show this statement for k < r , where Pr and Pi contain no edges of
opposing direction ∀ k < i < r .
Reasoning. Let Pk+1 be the last path Pk ,Pk+1, . . . ,Pk+i , . . . ,Pr with edges of op-
posing direction to Pr . From |E(Pk+1) | + 2 ⊆ |E(Pr ) | it follows (with |E(Pk ) | ≤
|E(Pk+1) |):

|E(Pk ) | + 2 ≤ |E(Pk+1) + 2 ≤ |E(Pr ) | |

We assume without loss of generality that Pk and Pr contain edges of opposing direc-
tion but not Pi ,Pr ∀ k < i < r . Construct Gk with all edges from Pk ∪ Pr without
pairs of edges of opposing direction. It holds that E(Gk ) ⊆ E(G fk ) because other-
wise ∃e ∈ Pr : ���E(G fk ) ��� hence e is not contained in E(G fk ), but in E(G fr ). Hence
e was added in iterations k , k + 1, . . . , r − 1. So e has an edge of opposing direction in
Pk , Pk+1, . . . , Pr−1.

�

Analogously as in case a we find 2 edge-disjoint s-t-paths P1 and P2 in G fk :

2 |E(Pk ) | ≤ |E(P1) | + |E(P2) | ≤ |E(Gk ) | ≤ |E(Pk ) | + |E(Pr ) | − 2

⇒ |E(Pk ) | + 2 ≤ |E(Pr ) |

Theorem 40. (Edmonds and Karp, 1972) The algorithm of Edmonds and Karp requires at
most nm

2 augmented paths (equals to the number of iterations) and determines a maximum
flow correctly. The algorithm has a runtime complexity of O(m2 · n).

Proof. An edge e ∈ P (where P is an augmented path in G f ) is called bottleneck edge if

min
g∈E (P)

u f (g) = u f (e)

Question. How often can some edge e occur as bottleneck edge during the algorithm run?
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Figure 14: Edmonds and Karp algorithm

Let e be a bottleneck edge in Pk . Then it holds that e < E(G fk+1 ). If the edge becomes a
bottleneck edge again of Pk with e > k , then the edge goes into the residual network; hence
the edge is of opposing direction of another edge of the previous augmented path; without
loss of generality to an edge of Pk :

|E(Pk ) | + 2 ≤ |E(Pe ) |

Introduction of e as bottleneck⇒ augmented path gets extended.

at most n − 1 extensions
⇒ per e at most n − 1 bottleneck edges
⇒ number of iterations: O(m · n)

�

This lecture took place on 3rd of November 2014.

11.6.1 Runtime analysis

The number of iterations is O(nm) because every edge O(n) becomes a bottleneck at one
point in time. A more precise upper bound is n

4 .

Let k be the iteration in which e = (v,w) becomes a bottleneck edge. Then let r > k be the
index of the next iteration in which e becomes a bottleneck edge again.

k + 1 iteration with e < G fk+1
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v w

k-th iteration

uf(e) = min uf(l)
l ∊ Pk

Figure 15: Edmonds and Karp algorithm – Bottlenecks

⇒
←−e ∈ G fp (k + 1 ≤ p)

. . .must be satisfied and flow must go through←−e such that e can recur in G f .

E(Pp ) ≥ E(Pk ) + 2

r iterations⇒ E(Pr ) ≥ E(Pp ) + 2

e ∈ G fr : E(Pr ) ≥ E(Pk ) + 4

Every time when e becomes a bottleneck edge, the length of the shortest s-t-path by at least
4. So e is at most n

4 times a bottleneck edge.

#iterations ≤ 2m
n
4
=

mn
2

(|E | ∪ |
←−
E | ≤ 2m)

This bound is the best we can achieve. In some cases this bound is reached.

Total runtime: O(m) per iteration ×O(mn) iterations = O(m2n)

11.7 Blocking flows and Dinitz’s algorithm (1970)

Given. Network (G,u, s, t) and s-t-flow f . Its level graph GL
f is a subgraph of G f with

V (GL
f ) := V (G f ),E(GL

f ) :=
{
e = (x, y) ∈ E(G f ) : distG f (s, x) + 1 = distG f (s, y)

}

Observation. GL
f is ayclic. v0 → v1 → v2 → vk → v0. dist(v0) = dist(v0) + k is a

contradiction.

Constructable with O(m) runtime (eg. BFS).

Definition 41. s-t-flow f is called blocking, if graph (V (G),
{
e ∈ E(GL

F ) : f (e) < u(e)
}
)

does not contain a s-t-path.
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Not every blocking flow is optimal.

• First example:
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Figure 16: Example (a) graphs

∃s-t-path in GL
f ⇒ f is non-blocking

• Second example:

@s-t-path⇒ f blocking, but there is a s-t-path in G f ⇒ non-optimal

in (V (G),
{
e ∈ E(GL

f ) : f (e) < u(e)
}
)

Recall that
|E(Pk+1) | ≥ |E(Pk ) |

E(Gk ) ⊆ E(G fk )

Theorem 42. Dinitz’ algorithm finds a maximum flow in O(n2m) runtime.

Proof. Runtime analysis. Number of iterations: O(n − 1)

Because length of shortest s-t-path increases after every iteration by at least 1. This is analo-
gous to proof of theorem 36: The blocking flow “contains” all shortest paths of same length.
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Figure 17: Example (b) graphs
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Figure 18: Example (b) schematic

Determination of a blocking flow in GL
f in O(nm) runtime (see practicals)

O(n2m)

Correctness. Blocking flow = 0 in GL
f ⇒ no s-t-path in G f ⇒ f is optimal.

(Sleator & Tarjan, 1984). O(m log n) for determination of a blocking flow in a level graph.
�

11.8 Goldberg & Tarjan: Push-Relabel algorithm

Algorithm by Goldberg & Tarjan (1988).

Definition 43. Let (G,u, s, t) be a network with source s and sink t. f : E(G) → R+ is
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Algorithm 10 Dinitz’s algorithm
Given. Network (G,u, s, t)
Find. s-t-flow f with maximum value

1: Let f (e) := 0 ∀ e ∈ E(G)
2: Build level-graph GL

f (subgraph of G f )
3: Determine a blocking flow f ′ in GL

f . If f ′ = 0, then stop “ f is optimal”.
4: Augment f ⊕ f ′, goto step 2

f ⊕ f ′(e) =



f (e) + f ′(e) e ∈ E(G)

f (e) + f ′(e) e ∈
←−
E (G)

∀ e ∈ E(G)

called preflow if f (e) ≤ u(e) ∀ e ∈ E(G) and ex f (v) ≥ 0 ∀ v ∈ V (G) \ {s}. A vertex
v ∈ V (G) \ {s, t} is called active if ex f (v) > 0.

Idea. Work with preflow f satisfying ∃ s-t-path in G f and try iteratively to reduce the excess
for active vertices until no more active vertices exist.

Definition 44. Let (G,u, s, t) be a network. A mapping ψ : V (G) → Z+ is called distance
marker if ψ(t) = 0 and ψ(s) = n and ψ(v) ≤ ψ(w) + 1 ∀ (v,w) ∈ G f .

An edge e = (v,w) ∈ E ∪
←−
W is called permitted edge if ψ(v) = ψ(w) + 1.

Observation. If ψ is a distance marker then ψ(v) is a lower bound for the number of edges
in a shortest v-t-path in G f .

v0 → v1 → · · · → vk = t

ψ(v0) ≤ ψ(v1) + 1 ≤ ψ(v2) + 1 + 1 ≤ . . . ≤ ψ(vk )︸︷︷︸
ψ (t )=0

+k = k

Algorithm applies push or relabel operations. Starts with preflow which saturates all edges
(s,v) ( f (s,v) = u(s,v))⇒ in G f there is no outgoing edge from s⇒ @ s-t-path

f (e) = 0 if e ∩ {s} = ∅
f (v, s) = 0

Has active vertex? If not, then done (optimality criterion satisfied)

Condition for ψ(v) ≤ ψ(w) + 1 is only satisfied for edges in G f .

permitted: ψ(v) = ψ(w) + 1
not permitted: ψ(v) < ψ(w) + 1

Theorem 45. The push-relabel algorithm has two invariants:

• f is always an s-t-preflow

• ψ is always a corresponding distance marker
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Algorithm 11 Push-Relabel algorithm (book: page 201)
Given. G,u, s, t
Find. Maximum s-t-flow f

1: f (e) := u(e) ∀ e ∈ δ+(s)
2: f (e) := 0 ∀ e ∈ E(G) \ δ+(s)
3: ψ(s) := n := |V (G) | and ψ(v) := 0 ∀ v ∈ V (G) \ {s}
4: while there exists an active vertex do
5: Let v be an active vertex
6: if no e ∈ δ+G f

(v) is a permitted edge then
7: Relabel
8: else
9: Let e ∈ δ+G f

(v) be some permitted edge
10: Push(e)
11: end if
12: end while

Push(e)
1: Let γ = min

{
ex f (v),u f (e)

}
where e starts in v

2: Augment f along e in γ
Relabel(v)

1: Let ψ(v) := min
{
ψ(w) + 1 : (v,w) ∈ δ+G f

(v)
}

Proof. After initialization both invariants are given (trivial case).

PUSH of edge (v,w)
f ′(e) = f (e) + y

ex f ′ (v) = ex f (v) − y ≥ 0

ex f ′ (w) = ex f (w) + y ≥ 0

Distance marker: If (v,w) is cancelled, condition is still satisfied.
If (w,v) is added, then ψ(w) ≤ ψ(v) + 1 but PUSH only if permitted: ψ(v) =
ψ(w) + 1.

RELABEL does not influence f , stays a preflow

ψ(v) = min
{
ψ(w) + 1 : w ∈ δ+(v)

}
⇒ ψ(v) increases

G f does not change. Inequations can only be invalidated for edges.

v → w ψ(v) ≤ ψ(w) + 1 ψ(v) is never increased too much
w → v ψ(w) ≤ ψ(v) + 1 ψ(v) is larger (which is fine)

�
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This lecture took place on 4th of November 2014.

Theorem 46. Let f be a preflow and ψ be a distance marker in regards of f . Then the
following statements hold:

1. s is reachable from every active vertex v in G f .

2. If v,w ∈ V (G) with w being reachable from v in G f , then ψ(v) ≤ ψ(w) + n − 1

3. t is not reachable in G f

Proof. • Part 1 of proof: Let v be active. Let R be the set of vertices reachable vertices in
G f from v. The following does not exist:

v

x

R

f(e) > 0

y

e ∊ Gf

Observation. ∀ e = (y, x) ∈ δ−(R) it holds that f (e) = 0. Otherwise y ∈ R which
contradicts.

ex f (w) =
∑

e∈δ− (w)

f (e) −
∑
δ+

f (e)

∑
w∈R

ex f =
∑

e∈δ− (R)

f (e) −
∑

e∈δ+ (R)

f (e) ≤ 0

f (e) = 0 in case e ∈ δ−(R)

For v it holds that ex f (v) > 0 because v is active

⇒ ∃w ∈ R with ex f (w) < 0

⇒ w = s ⇒ s ∈ R

• Part 2 of proof:

v=v0 v1 v2 vk=w
…

v-w-path in G f

ψ(v0) ≤ ψ(v1) + 1 ≤ ψ(v2) + 1 + 1 · · · ≤ ψ(w)︸︷︷︸
vk=w

+k ≤ ψ(w) + n − 1

k : length ≤ n − 1 because of n vertices in G.
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• Part 3 of proof - contradiction: Assume that t is reachable from s

⇒ ∃s-t-path in G f
b
⇒ ψ(s)︸︷︷︸

n

≤ ψ(t)︸︷︷︸
0

+n − 1⇒ n ≤ n − 1⇒ contradiction

�

Theorem 47. When PR algorithm terminates, f is a maximum s-t-flow.

Proof. No active vertices at termination⇒ preflow is flow and from Theorem 46 (c) “t is not
reachable from s in G f ” is an invariant of the algorithm. Hence at termination the optimality
criterion is satisfied. �

Theorem 48 (number of relabel operations). • ∀ v ∈ V (G) : ψ(v) is increased in
every relabel operation by at least one (strong monotonicity, no decrement)

• ψ(v) ≤ 2n − 1 is an invariant ∀v ∈ V (G)

• No vertex exists which is relabelled more than 2n − 1 times. Hence the maximum
number of relabel operations is 2n2 − n

Proof. • Active v has edges to w1,w2, . . . ,wk .

ψ(v) < ψ(wi ) + 1 ⇒ edge not permitted

Relabel:
ψ(v) = min

i:wi ∈δ+ (v)
ψ(wi ) + 1 = ψ(wl ) + 1 > ψ(v)

• Initialization: ψ(v) = 0 ∀ v , s, ψ(s) = n. Initialization okay.
Inequation can possibly be invalidated by relabelling?

Relabel(v) ⇒ v active
theorem 46 (1)
⇒ s is reachable in G f from v

theorem 46 (2)
⇒ ψ(v) ≤ ψ(s) + n − 1 = n + n − 1 = 2n − 1

• Follows trivially from the previous 2 points

�

Definition 49. Let e = (x, y). push(e) is called saturating push operation if

y = min
{

ex f (x),u f (e)
}
= u f (e)︸︷︷︸
,ex f (x)

otherwise push(e) is a non-saturating operation.

Theorem 50. The number of saturating push operations is 2nm.

Proof. Consider e = (v,w). How many times will a saturating push operation push(e) be
executed?
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v w v w
e

⇒

Edge must be be reintroduced in G f to be pushed again.

ψ(v) = ψ(w) + 1

Before the next push(e), e must be added to G f . How? This is only possible through
push(←−e ). It holds:

ψ ′(w) = ψ ′(v) + 1 ⇒ ψ ′(w) ≥ ψ(v) + 1

So φ(w) has been incremented by at least 2. If the next push(e) happens, it furthermore
holds that

ψ ′′(v) = ψ ′′(w) + 1 ≥ ψ(w) + 2 + 1

In conclusion: Between every two continuous saturating push operations push(e), φ(v) was
incremented by at least 2. From theorem 48 (b) we conclude that we have at most n− 1 jumps
(by 2) of φ(v). This also means that we have at most n saturating push operations.

So for all edges of E ∪
←−
E we have at most 2mn saturating push operations. �

Theorem 51. Number of non-saturating push operations. The number of non-saturating push
operations is O(n2m).

Proof. Let A be the set of all active vertices.

D :=
∑
v∈A

ψ(v) potential function

Start with D = 0. At termination A = ∅,D = 0. How does D change with execution of
various operations?

• Non-saturating operation push(v,w):
Transitions:

active → active D is less or equal
non-active → active 4D = −ψ(v) + ψ(w) = −(ψ(w) + 1) + ψ(w) = −1

D is less

• Saturating operation push(v,w): Transitions:

w : active → active D stays the same
w : non-active → active D stays the same or increases
v : active → active D stays the same or increases
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Relabel D increases, because ψ(v) increases.

So in conclusion only non-saturating push is responsible for decreasing D.

�

By how much does D increment during the algorithm’s run?

2nm saturating pushes + 2n2 − n relabels

It increases with O((nm + n2) · n) = O(n2m).

Theorem 52. Better analysis for number of non-saturating push operations. Cheriyan and
Mehlhorn 1999. If the algorithm always select an active vertex with maximumψ(v), then the
push-and-relabel algorithm only requires 8n2 √m non-saturating push operations.

Theorem 53. The push-and-relabel algorithm solves the maximum-flow problem correctly
and can be implemented with O(n2 √m) runtime. (with selection of active vertices as in
Theorem 52)

Proof. Correctness is given in theorem 47 and theorem 45. What about the runtime?

We use a doubly-linked list Li where

Li := {v ∈ V (G); v is active;ψ(v) = i 0 ≤ i ≤ 2n − 1}
At the begining we start with L0 := all active vertices. Let i = 0 (at the beginning) and scan
Li for some selected v ∈ Li . As an invariant i is the greatest index j with L j , 0.

• i must be updated in constant time

• lists as well

k = ψ(v)

Relabel:
ψ(v) = min

w∈δ+ (v)
{ψ(w) + 1} = k̂

O(��δ+(v) ��)

If k > i, then i = k .
L k̂ = Lk ∪ {v}
Lk = Lk \ {v}

push(e) : v → w

• v = active, switch to

– active
– inactive: Lψ (v) = Lψ (v) \ {v}

• w = active, switch to

50



– active: i = ψ(v) ∧ Lψ (v) = ∅, i ← i′, i′ next Li′ , ∅

• w: inactive, switch to

– active: Lψ̂ (w) = L̂ψ (w) ∪ {w} , ψ̂(w) > i then i = ψ̂(w)

Data structure Av ∀ v ∈ V (G) is doubly linked.

Av =
{
w ∈ δ+(v) : (v,w) permitted

}

Saturating push: edge is removed from Av :

Av := Av \ {w}
Unsaturating push: Av stays unmodified

Av := Av \ {w}

Relabel(v) := ψ(w) = min
w∈δ+ (v)

{ψ(w) + 1} = ψ(we ) + 1⇒ Av = Av ∪ {we}
Per edge 2n − 1 times.

2n − 1O(
⋃

v∈V (G)

��δ+(v) ��)

= O(nm)

�

This lecture took place on 10th of November 2014.

11.9 Minimum-capacity cut problem

Given. Instance (G,u, s, t), u : t → Rt

Find. A s-t-cut in G with minimum capacity

Simple solution. Determine maximum flow f from s to t and all reachable vertices v from s
in G f . Let C be that vertex. From the maximum-flow min-cut theorem it follows that

value( f ) = u(δ(L)) → δ(c) minimum s-t-cut

If you want to compute one minimum cut per pair (s, t), solve
(
n
2

)
max-flow problems and

determine the corresponding cuts (as above)(
n
2

)
O(n2 √n)

(n − 1) flow computations actually suffice; see Gomor-Hu tree (1962).

For undirected graphs. Let G be an undirected graph and u : E(G) → R+ ∀ s, t ∈ V (G).
Let λs, t be the local node connectivity defined as minimum capacity of a splitting s-t-cut. The
node connectivity of a graph is defined as mins, t ∈V (G),s,t λs, t where λs, t is computed with
u(e) = 1 ∀ e ∈ E(G).
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Figure 19: Vertex connection

λ1,2 = λ2,3 = λ1,3 = 2

min
{
λ12, λ23, λ13

}
= 2

⇒ node connectivity of G = 2

Alternative definition: G = (V,E) is called t-node-connected if the graph G stays connected
after removal of t − 1 vertices. The node connectivity number K (G) of a graph G is defined
as K (G) = maxt ∈{1,2, ..., |V (G) |−2}

{
t : G t node connectivity

}
.

Theorem 54. For every triple of vertices i, j, k ∈ V (G) (G is an undirected graph) it holds
that

λi,k ≥ min
{
λi, j , λ j,k

}

Proof. Let δ(C) be a minimum i-k-cut with λi,k = u(δ(C)). If j ∈ C then λ j,k ≤

u(δ(C)) = λi,k . If j ∈ V (G) \ C then λi, j ≤ u(δ(C)) = λi,k . So λi,k ≥ λ j,k or
λi,k ≥ λi, j .⇒ λi,k ≥ min

{
λ j,k , λ j, i

}
. �

Remark. The condition of theorem 54 is required for (λi, j )i, j ∈1,2, ...,n node connectivity
numbers of a graph with vertex set {1,2, . . . ,n}. But this condition is not sufficient; hence ∃
numbers λi, j for i, j ∈ {1,2, . . . ,n} that satisfy these conditions, but cannot be retrieved as
node connectivity number of a graph.

If λi, j = λ j, i∀i, j ∈ {1,2, . . . ,n} and the conditions of theorem 54 hold, then it holds
that a graph G with V (G) = {1,2, . . . ,n} and ∃u : E(G) → R+, such that λi, j for i, j ∈{1,2, . . . ,n} that are local node connectivity numbers of (G,u).

Definition 55. Let G be an undirected graph and u : E(G) → R+, E in tree T is called
Gomory-Hu-tree of (G,u) iff

V (T ) = V (G) ∧ λs, t = min
e∈E (Ps, t )

u(λG (ce )) ∀ s, t ∈ V (G), s , t

K3,3 n ≡ 1
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s ce

c

t

elementary cut

Figure 20: Elementary cut

λsi, t j = λs1, t1 = 3∀i ∈ {1,2,3} , j ∈ {1,2,3}
λs1,s2 = λs1,s3 = λs2,s3 = λ t1, t2 = λ t2, t3 = λ t1, t3 = 3

λs2, t2 = min



u(δ(ce1 ))︸    ︷︷    ︸
=3

,u(δ(c(e2)))︸        ︷︷        ︸
=3



= 3

s1

s2

s3

t2

t3

t1

s2

s3

t3

t2

t1

e1

e2

s1

Gomory-Hu tree

Figure 21: Gomory Hu algorithm
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11.10 Gomory-Hu algorithm

Basic idea: Select vertex pair s, t ∈ V (G) and determine its minimum s-t-cut δ(A) where
B := V (G) \ A. Contract A (or B) to one vertex. Then select s′, t ′ ∈ B (or A).

Build a minimum s′-t ′-cut δ(A′) in contracting graph G′ with V (G′) \ A′. Observe that a
minimum cut in the contracting graph corresponds to a minimum cut in the original graph.
Repeat this step as long as not-separated vertices exist.

V1 ⊆ V(G) V2

V3 ⊆ V(G)

V4

V1, V2, V3, V4

decomposition of V(G)

Figure 22: Gomory Hu algorithm idea

Theorem 56. Let G be an undirected graph and u : E(G) → R+. Let s, t ∈ V (G) and
δ(A) be a minimum s-t-cut in (G′,u′). (G′,u′) results from (G,u) by contraction of A by
a single vertex K . Let s′, t ′ ∈ V (G) \ A. Then it holds that

∀min s’-t’-cuts : δ(K ∪ {A}) is δ(K ∪ A) a minimum s’-t’-cut in (G,u)

Remark. It’s a minimal cut. It does not preserve capacity.

So K is the set of non-contracting vertices that are on the same halfplane like the s′-t ′-cut
like A.

Proof. We show: there exists a minimum s′-t ′-cut δ(A′) in (G,u′) with A ⊆ A′. Let δ(c)
be a minimum s′-t ′-cut in (G,u). Without loss of generality let s ∈ C. If A ⊆ C, we are
done. Otherwise build a second minimum s′-t ′-path in G, which contains A. It holds that

u(δ(A)) + u(δ(c)) ≥ u(δ(A ∩ C)) + u(δ(A ∪ C))

Because δ(A ∩ C) is a s-t-cut G it holds that

u(δ(A ∩ c)) ≥ λs, t = u(δ(A))
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Algorithm 12 Gomory Hu algorithm
Given. undirected graph G, u : E(G) → R+
Find. A Gomory-Hu tree T for (G,u)

1: V (T ) = {V (G)}, E(T ) = ∅ (a vertex that corresponds to all vertices in G)
2: Choose X ∈ V (T ) with |X | ≥ 2. If @X , then goto step 6.
3: Choose s, t ∈ X (s , t), H as connected component C of T − X
4: Select Sc :=

⋃
Y ∈V (C ) Y . (G′,u′) results from (G,u) by contraction of sc to a

single vertex Vc for every connected component C of T − x. So V (G′) = X ∪{
Vc : c connected component of T − X

}
.

5: Determine the minimum s-t-cut δ(A′) in (G′,u′). Let B′ = V (G′) \ A′. Set

A =
⋃

Vc ∈A′\X

Sc ∪ (A′ ∩ X )

and

B =
⋃

Vc ∈B′\X

Sc ∪ (B′ ∩ X )

6: Set V (T ) := (V (T ) \ X ) ∪ (A ∩ X ) ∪ (B ∩ X ).
7: For every edge e = {X,Y} ∈ E(T ) incident with X do,
8: if V ⊆ A, set e′ := {A ∩ X,Y}
9: else e′ := {B ∩ X,Y}.

10: Set E(T ) := (E(T ) \ e) ∪ {e′}, w(e′) := w(e).
11: Set E(T ) := E(T ) ∪ {A ∩ X,B ∩ X} with
12: w({A ∩ X,B ∩W}) = u′(δG , (A′)).
13: Goto step 2.
14: Replace all {X} ∈ V (T ) by X and all {{X} ,{Y}} by {X,Y}.
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s'

t
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A

K

t

K

A

s

⇒

Figure 23: Lemma 4.16

u(δ(A ∩ C) ≤ u(δ(c)) = λs′, t ′ ⇒ u(δ(A ∩ C)) = λs′, t ′

A ∩ C is minimum s’-t’ cut with A ∩ C ⊆ A

�

Definition 57. f : 2M → R where M is the set and 2M is the power set of M . f is called
submodular if f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B) ∀ A,B ∈ 2M .

Theorem 58. After every iteration of step 4, the following conditions hold:

• A ∪̇ B = V (G)

• E(A,B) is a minimum s-t-cut in (G,u)

A,B ⊆ V (G) E(A,B) := {e ∈ E(G) : e = (x, y) x ∈ A, y ∈ B}
A proof for Theorem 58 is not provided.

Theorem 59. Invariant of the algorithm:

w(e) = u(δG (
⋃
z∈Ce

Z )) ∀ e ∈ E(T )

where ce and V (T ) \ ce are the two connected components of T − e. Furthermore it holds
that

∀e = {P,Q} ∈ E(T ) ∃p ∈ P ∃q ∈ Q with λp,q = w(e)
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V(G) \ C V(G) \ A

A ∩ C A ∪ C

A

t

c

s'

Figure 24: Lemma 4.16 proof

A proof for Theorem 59 is not provided.

Theorem 60. The Gomory-Hu algorithm works correctly. Every undirected graph contains
a Gomory-Hu tree which can be computed in runtime O(n3 √m).

A proof for Theorem 60 is not provided.

11.11 Minimum capacity of a cut in an undirected graph / MA-order

Given. G as undirected graph, u : E(G) → R+

Find. Determine a A∗ $ V (G), A∗ , ∅ such that

u(δ(A∗)) = min
A$V (G),A,∅

u(δ(A))

Solution 1. Let s ∈ V (G) be random. Determine λs, t∀t ∈ V (G) \ {s}. The cut minimiz-
ing λs, t is the optimal cut. The solution with Gomory-Hu algorithm: The optimal cut is
computed using the edge e∗ ∈ GH-tree T with w(e∗) = mine∈E (T ) w(e).

Solution 2. (Frank 1994, Stoer & Wagner 1997.) Let G be an undirected graph with u :
E(G) → R+. An order v1,v2, . . . ,vu of vertices is called MA-order (maximum adjacency
order) if ∀ i ∈ {1,2, . . . ,n} it holds that:∑

e∈E ({v1},{v1,v2, ...,vi−1})

u(e) = max
j ∈{i, i+1, ...,n}

∑
e∈E ({v1},{v1, ...,vi−1})

u(e)

This order is not distinct.

Theorem 61. In an undirected graph G with u : E(G) → R+ we can compute a MA-order
in O(m + n log n) time.

Proof. Algorithmically. Let α(v) := 0 ∀ v ∈ V (G). Apply the following solution for
i = 1 to n. Select some vi ∈ argmax {α(v) : v ∈ V (G) | {v1, . . . ,vi−1}}. “tie branching
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arbitrarily”.

α(v) := α(v) +
∑

e∈E ({vi},{v})

u(e) ∀v ∈ V (G) \ {v1,v2, . . . ,vi}
�

Proving correctness is trivial this is an invariant:

α(v) =
∑

c∈E ({v},{v1, ...,vi})

∀v ∈ V (G) \ {v1, . . . ,vi}

Time complexity: Fibonacci heaps with key −α(v).

delete min O(log n) (amortized)
insert O(1)
decrease-key O(1) (armortized)

⇒ O(m + n log n)

Theorem 62. Let G be an undirected graph with u : E(G) → R+ and MA-order u1, . . . ,un .
Then it holds that

λvn−1,vn =
∑

e∈E ({vn},{v1, ...,vn−1})

Proof. Proving direction “≤” is trivial. For “≥” via induction over |V (G) | + |E(G) |.

induction base |V (G) | ≤ 2 is trivial.

induction step |V (G) | ≥ 3. Without loss of generality (Vn−1,Vn ) < E(G), because if
e ∈ E(G) with e = (vn−1,vn ). Then e is optimal cut between vn−1 and vn . Fur-
thermore e ∈ E({vn} ,{v1, . . . ,vn−1}). Hence removal of edge e reduces both sides
of theorem 62 by u(e). Followingly the induction hypothesis is applicable.
Let

R :=
∑

e∈E ({vn},{v1, ...,vn−2})

u(e)
(un,un−1)<E
=

∑
e∈E ({vn},{v1, ...,vn−1})

u(e)

(v1, . . . ,vn ) is MA-order ∈ G ⇒ (v1, . . . ,vn−1) is MA-order ∈ G \ vn

From the induction hypothesis for G − {vn} it follows that

λn−2,n−1 =
∑

e∈E ({vn−1},{v1, ...,vn−2})

u(e) ≥
∑

e∈E ({vn},{v1, ...,vn−2})

u(e) = R

⇒ λGvn−2,vn−1 ≥ R (3)

v1,v2, . . . ,vn−2,vn is a MA-order in G − {vn−1}
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From induction hypothesis it follows:

λGvn−2,vn ≥ λ
G−{vn−1}
vn−2,vn =

∑
e∈E ({v1},{v1, ...,vn−1})

u(e) = R (4)

From the last two statements regarding R we conclude,

λvn−1,vn := λGvn−1,vn ≥ min
{
λGvn−1,vn−2 , λ

G
vn−2,vn

}
≥ R

(triangle inequation)

�

Theorem 63. A cut of minimum capacity in an undirected graph G with u : E(G) → R+
can be computed in O(nm + n2 log m) runtime.

Proof. Constructive proof. Several edges of capacity u with same source and destination can
be combined to a single edge. So we can can assume wlog no multi-edges.

Denote λG as the minimum capacity of a cut in G. Let G0 := G. Apply n steps. In the i-th
step (i = 1,2, . . . ,n) select vertex x, y ∈ V (Gi−1) with

λGi−1
x,y =

∑
e∈δGi−1 (x)

u(e)

It’s existence is given by theorem 62 and x last vertex and y pre-last vertex in regards of a
MA-order in Gi−1.

Let yi = λGi−1
x,y and zi = x ∀ i = 1,2, . . . ,n. Build Gi from Gi−1 by contraction of edge

(x, y).

Observation.

λ(G) = λ(G0) = min {λ(G1), γ1} = min {min {λ(G2, γ2)} , γ1}
= min {λ(G2), γ2, γ1} = min



λ( Gn−1︸︷︷︸
=+∞

), γ1, γ2, . . . , γn−1




= min
i=1, ...,n−1

γi value of optimal cut

Let λ(G) = γk = λk−1
Zk ,γ

(zk is a vertex connected by an edge with y and this edge is part of
the cut; zk is alone, but could be a multi-vertex).

The optimal cut is determine by the subset of the vertex set, that can be contracted in zk .

Complexity. n iterations. Per iteration we compute the MA-order in O(m + n log n) and
contraction and defining new capacities takes O(n + m). This gives us

⇒ O(mn + n2 log n)

Example.

MA in G0 : 1︸︷︷︸
arbitrary

, 4︸︷︷︸
most edges to 1

, 3︸︷︷︸
y

, 2︸︷︷︸
x
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1

1

4

2
2

3

1

2,3,4
5

1

2,3
2

4
6

3

G = G0
G1

G2

Figure 25: Example for minimum capacity cut

z1 = 2 y1 = 1 + 2 + 2 = 5

MA in G1 : 1, 4︸︷︷︸
y

, (2,3)︸︷︷︸
x

z2 = (2,3) y2 = 2 + 6 = 8

MA in G2 : 1︸︷︷︸
y

, (4,2,3)︸ ︷︷ ︸
x

z3 = (4,2,3) y3 = 5

γ(G) = min
{
γ1, γ2, γ3

}
= γ1(or γ3)

In G3 we would have only 1 vertex remaining. �

12 Flows with minimum costs

Definition 64 (b-flow, offering / demanding vertex). Let G be a digraph.

u : E(G) → R+ c : E(G) → R
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Let b : V (G) → R with
∑

v∈V (G) b(v) = 0. A b-flow of G is a mapping f : E(G) → R+
such that

f (e) ≤ u(e) ∀e ∈ E(G) “capacity restrictions”
and∑

e∈δ+ (v)

f (e) −
∑

e∈δ− (v)

f (e) = b(v) ∀v ∈ V (G) flow preservation conditions

hold.

A v with b(v) > 0 is called “offering vertex”. A v with b(v) < 0 is called “demanding
vertex”.

12.1 Minimum cost flow problem (MCFP/MKFP)

Given. Digraph G

u : E(G) → R+ c : E(G) → R b : V (G) → R

with
∑

v∈V (G) b(v) = 0

Find. Determine a b-flow with minimum costs,
ie. the b-flow which minimizes

∑
e∈E (G) c(e) f (e)

Remark. A b-flow is determined by the maximum-flow-problem.

u(s,v) = max {0,b(V )} ∀ v ∈ V (G)

u(v, t) = max {0,−b(v)} ∀ v ∈ V (G)

A maximum s-t-flow f in G′ has value
∑

v∈V (G) b(v) iff a b-flow exists in G. If b-flow exists,
then f restricted by E(G) by b-flow.

v

s

G'

G

t

Figure 26: b-flow

Observation. There exists a max s-t-flow with value∑
v∈V (G),b(v)>0

b(v) in G’
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max{b(v), 0} max{0, -b(v)}

s t

G
G'

Figure 27: MFCP observation

⇔ b − flow in G

⇒ Let f ′ be a max-s-t-flow with

value( f ′) =
∑

v∈V (G),b(v)>0
b(v)

Let f = f ′ |E (G) hence f : E(G) → R with f (e) = f ′(e) ∀ e ∈ E(G). Show that f is a
b-flow.

∀ v ∈ V (G) :
∑

l ∈δ+
G

(v)

f (e)−
∑

l ∈δ−
G

(v)

f (e) = ∀ e∈δ+
G

(v) f ′(e)− f ′(v, t)−
∑

e∈δ−
G

(v)

f ′(e)+ f ′(s,v)

= f ′(s,v) − f ′(v, t) = max {b(v),0} −max {0,−b(v)} = b(v) ⇒ f is b-flow

⇐ Let f be a b-flow in G. Construct f ′ : E(G′) → Rwith

f ′(e) =




f (e) e ∈ z(G)
max {0,b(v)} e = (s,v)
max {0,−b(v)} e = (v, t)

Exercise: Show that f ′ is an s-t-flow with value∑
v∈V (G)

max {0,b(v)} = ∑
v∈V (G),b(v)>0

b(v)

12.2 The transportation problem

Given. Digraph G with V (G) = A ∪· B and E(G) ⊆ A × B. b(v) ≥ 0 ∀ v ∈ A,b(v) <
0 ∀ v ∈ B,

∑
v∈V (G) b(v) = 0. Capacities u(e) = ∞ ∀ e ∈ E(G) and c : E(G) → R.
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Find. b-flow in G with minimum costs

Remark. Without loss of generality c(e) ≥ 0 ∀ e ∈ E(G). Otherwise α is large enough
(c(e) + α ≥ 0 ∀ e ∈ E(G)).

c′(e) = c(e) + α ≥ 0 ∀ e ∈ E(G)

Let f be a b-flow in G. Compare c′( f ) and c( f ).

c′( f ) =
∑

e∈E (G)

c′(e) f (e) =
∑

e∈E (G)

(c(e) + α) f (e) = c( f ) + α
∑

e∈E (G)

f (e)

Consider

∑
(u,v)∈E (G)

f (u,v) =
∑

u∈V (G)

∑
e∈δ+

G
(u)

f (e) =
∑
u∈A

*..
,

∑
e∈δ+

G
(u)

f (e) −
∑

e∈δ−
G

(u)

f (e)
+//
-
=

∑
u∈A

b(u) =: b

c′( f ) = c( f ) + ab

Figure 28: Transportation problem

12.3 An optimality criterion

Let f be a b-flow. G f is defined analogously like in the max-flow problem. Costs in G f :

cf : E(G f ) → R

cf (e) =



c(e) e ∈ E(G)
−c(e) ←−e ∈ E(G)

Definition 65. Let G be a digraph with capacity u : E(G) → R+ and let f be a b-flow in G.
A f -augmenting cycle is a cycle in G f .
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Theorem 66. Let G be a digraph with capacity u : E(G) → R+. Let f and f ′ be b-
flows in G. Then g :

←→
E (G) → R with g(e) = max {0, f ′(e) − f (e)} and g(←−e ) =

max {0, f (e) − f ′(e)} ∀ e ∈ E(G) is a circulation in
←→
G := (V (G),

←→
E (G)). Furthermore

it holds that g(e) = 0 ∀ e ∈
←→
E (G) \ E(G f ) and c(g) = c( f ′) − c( f ).

Proof.
∀ v ∈ V (

←→
G ) = V (G)∑

e∈δ+←→
G

(v)

g(e) −
∑

e∈δ−←→
G

(v)

g(e)

=
∑

e∈δ+
G

(v)

max
{

0, f ′(e) − f (e)
}
−

∑
e∈δ−

G
(v)

−max
{

0, f (e) − f ′(e)
}
−

∑
e∈δ−

G
(v)

max
{

0, f ′(e) − f (e)
}
+

∑
e∈δ+

G
(v)

−max
{

0, f (e) − f ′(e)
}

c ∈ E(G)
v v

(a) (b)

Figure 29: Proof for proposition 5.1

(a) is δ+←→
G

(v). (b) is δ−←→
G

(v).
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∑
e∈δ+

G
(v)

(
max

{
0, f ′ − f

}
−max

{
0, f − f ′

})︸                                         ︷︷                                         ︸
= f ′− f

−
∑

e∈δ−
G

(v)

(
f ′(e) − f (e)

)
=

∑
e∈δ+

G
(v)

(
f ′(e) − f (e)

)
−

∑
l ∈δ−

G
(v)

(
f ′(e) − f (e)

)
= 0

2 cases for e ∈
←→
G \ E(G f ):

forward edge e ∈ E(G) f (e) = u(e) g(e) = max {0, f ′ − f } = max {0, f ′ − u} = 0
backwards edge ←−e ∈ E(G) f (←−e ) = 0 g(e) −max {0, f − f ′} = max {0,0 − f ′} = 0

�

c(g) =
∑

e∈
←→
E (G)

g(e)c(e)

=
∑

e∈E (G)

c(e) max
{

0, f ′(e) − f (e)
}
+

∑
←−e ∈E (G)

−c(←−e ) max
{

0, f (←−e ) − f ′(←−e )
}

=
∑

e∈E (G)

c(e) max
{

0, f ′ − f
}
+

∑
e∈E (G)

c(e)[−max
{

0, f − f ′
}

]

=
∑

e∈E (G)

c(e)
[
max

{
0, f ′ − f

}
−max

{
0, f − f ′

}]︸                                         ︷︷                                         ︸
f ′(e)− f (e)

=
∑

e∈E (G)

c(e)
(

f ′(e) − f (e)
)
= c( f ′) − c( f )

Theorem 67. For every circulation f in a digraph G there is a family C of at most E(G)
cycles in G and positive numbers h(C) ∀ c ∈ C with

f (e) =
∑

c∈C,e∈E (C )

h(e)

Proof. This follows directly from the flow decomposition theorem for s-t-flows with arbi-
trary weighted s, t ∈ V (G), s , t because circulation f is also a s-t-flow with flow value
0.

f (e) =
∑

P∈P,e∈E (P)

h(P)+
∑

c∈C,e∈E
h(c) ∀ e ∈ E(G),h(P) ≥ 0 ∀ P ∈ P,h(C) ≥ 0 ∀ c ∈ C

value( f ) =
∑
P∈P

h(P) = 0⇒ h(P) = 0 ∀ P ∈ P

with |P | + |C | = O( |E(G) |)

�

Theorem 68. (Klein, 1967) Let (G,u,b,c) be an instance of MKFP. A b-flowg has minimum
costs exactly iff there are no f -augmented cycles with negative costs in G f .
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c
+δ

+δ

+δ

+δ

+δ

+δ

Gf

Figure 30: Proof of theorem 68

Proof. Direction of proof:⇒

Assume that an f -augmented cycle C (in G f ) exists with γ < 0 (γ :=
∑

e∈E (C ) cf (e)). Let
δ = mine∈E (C ) u f (e) > 0.

Extension of G f from forward edge→ +δ in G. Backward edge from backward edge→ −δ
in G.

Augment flow and retrieve f ′ with

f ⊕ c = f ′(e) =




f (e) e ∈ E(C),←−e < E(C)
f (e) + δ e ∈ E(C)
f (e) − δ ←−e ∈ E(C)

f ′ is a b-flow.

c( f ′) =
∑

e∈E (G)

c(e) f ′(e) =
∑

e∈E (G)

c(e) f (e) +
∑

←−, e∈E (C )

c(e)( f ′(e) − f (e))

= c( f ) +
∑

e∈E (C )

c(e)δ +
∑

e:←−e ∈E (C )

−c(e)(−δ) = c( f ) + δ *.
,

∑
e∈E (C ),e∈E (G)

c(e) − 2c(e)+/
-

e ∈ E(C),←−e < E(C)

= c( f ) + δ *.
,

∑
c∈E (C )

c(e) +
∑

←−e ∈E (C )

c(←−e )+/
-
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c( f ′) = c( f ) + δγ ⇒ c( f ′) is not optimal

Direction of proof:⇐

Let f be a not-minimum cost b-flow. Show that there exists some f -augmented cycle K in
G f with c(k) < 0.

Let f ′ be a b-flow with c( f ′) < c( f ).

Definition as in Theorem 66: g :
←→
E → R+ with g(e) = max {0, f ′ − f } and g(←−e ) =

max {0, f − f ′} ∀ c ∈ E(G).

According to Theorem 66, g is a circulation. From Theorem 67 it follows that family C of
cycles in

←→
E exists with

h : C → R+ G 7→ h(C)

g(e) =
∑

c∈C,e∈E (C )

h(c)

Because g(e) = 0 ∀ e < G f , for all c ∈ C it holds that E(C) ⊆ E(G f ) (Theorem 66). Also
it follows that c(g) = c( f ′) − c( f ) < 0.

0 > c(g) =
∑

e∈
←→
E (G)

c(e)g(e) =
∑

e∈
←→
E (G)

c(e)
∑

C ∈C,e∈E (C )

h(c)

=
∑
C ∈C

h(c)
∑

l ∈
←→
E (G)∩E (G)

c(e) =
∑
C ∈C

h(C)

⇒ ∃C ∈ C with c(C) < 0

�

12.4 Minimum-mean cycle cancelling algorithm

This lecture took place on 18th of November 2014.

Theorem 69. (Corollary.) A b-flow has minimum costs iff (G f ,Cf ) has a (valid) potential
function.

Proof. b-flow f is optimal⇔@ cycle K with cf (K ) < 0 in (G f ,Cf )⇔∃ potential function
π : V (G f ) → R such that cf (n, f ) + π(n) − π(v) ≥ 0 ∀ (u,v) ∈ E(G f ) �

Proof. Second proof to prove corollary (using linear programming)

Let (xe )e∈E (G) which corresponds to a b-flow. Costs:

−
∑

e∈E (G)

ce xe → max

Linear programming:
∑

e∈δ+ (v)

xe −
∑

e∈δ− (v)

xe = b(v) ∀ v ∈ V (G)

xe ≤ ue ∀ e ∈ E(G)
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Algorithm 13 Minimum-mean cycle cancelling algorithm
Given. digraph G, u : E(G) → R+, c : E(G) → R, b : V (G) → Rwith

∑
v∈V (G) b(v) =

0
Find. A b-flow f ∗ with minimum costs c( f ∗) =

∑
e∈E (G) c(e) · f ∗(c) or “no b-flow exists

in G”
Remark. f ′ |E (G) denotes f ′ restricted to the edges E(G)

1: Extend G by vertices s, t and edges (s,v), (v, t) ∀ v ∈ V (G) with u((s,v)) =
max {0,b(v)}. u(v, t) = max {0,−b(v)} ∀ v ∈ V (G). Let G′ be an extended net-
work. Determine max-s-t-flow f ′ in G′.

2: if value( f ′) <
∑

v∈V (G) b(v) then
3: “there does not exist a b-flow in G”
4: else
5: let f = f ′ |E (G)
6: end if
7: while ∃ cycle with negative weights in G f do
8: Determine cycle K with min c (K )

|E (K ) | in G f .
9: Augment f along K : f := f ⊕ K

10: end while
11: return f

xe ≥ 0 ∀ e ∈ E(G)

Dual problem:
(DLP) min

∑
v∈V (G)

b(v)yv +
∑

e∈E (G)

ue ze

yu − yv + ze ≥ −ce ∀ e = (u,v) ∈ E(G)

z ≥ 0 ∀ e ∈ E(G)

yv ∈ R ∀ v ∈ V (G)

Let (xe )e∈E (G) be a b-flow.

⇒ (xe )e∈E (G) is valid for linear programming

Theorem about complementary slacks:

Theorem 70. x optimal⇒ ∃ optimal solution (2e )e∈E (G) , (yv )v ∈ V (G) of DLP with
non-satisfied complementary slack.

⇒ Xe (Yu − Yv + ze + ce ) = 0 ∀ e ∈ E(G)

ze (ue − xe ) = 0 ∀ e ∈ E(G)

0 ≤ −ze ≤ c(e) + yu − yv for e = (u,v) ∈ E(G) with X (e) < u(e)

and
c(e) + yu − yv = −ze ≤ 0 for e = (u,v) ∈ E(G) with Xe > 0

⇒ (yv )v∈V (G) is a potential function

because c(u,v) + yu − yv ≥ 0 ∀ (u,v) ∈ E(G f ). We have 2 cases for (u,v) ∈ E(G f ):
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1. xuv < uuv (e = (u,v) ∈ E(G))

2. xuv > 0

−c(u,v) + yv − yu ≥ 0 from ce + yu − yv ≤ 0

Can all be inverted! �

12.4.1 Analysis of MMCC (Min Mean Cycle Cancelling algorithm)

Denote the minimum average weight of a cycle in G f with µ( f )

µ( f ) := min
k is cycle in G f

∑
e∈E (K ) cf (e)
|E(K ) |

Theorem 71. Let f 1, f2, . . . , fK be a sequence of b-flows such that for all i = 1,2, . . . , k − 1:
µ( f i ) < 0 and f i+1 originates from f i by augmenting f i along cycle Ki in G fi ( f i+1 =

f i ⊕ Ki ).

For now let Ki be a cycle with minimum average weight in G f . Then the following state-
ments hold:

µ( f i ) ≤ µ( f i+1) ∀ i

µ( f i ) ≤
n

n − 2
µ( fc ) ∀ i < l

with property that Ki ∪ Kl contains at least one pair of edges of opposing direction.

Proof. Let i be static. Consider (V (G),E(Ki ) ∪ E(Ki+1) and remove edges of opposing
direction. Results in a digraph H (edges occuring multiple times are counted twice).

H is subgraph of G f : (e ∈ E(Ki+1) \ E(G f ) ⇒←−e ∈ E(Ki )). H is Eulerian graph⇒ can
be decomposed into several cycles k1, k2, . . . , ke in G fi .

G

0 < ye < ue

xf < uf
uf - xf

xe

ue - xe

⇒

Figure 31: Proof of theorem 71
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c(K j )
���E(K j )

���
≥ µ( f i ) ∀ 1 ≤ j ≤ l

• Equation 1: |E(H) | =
∑l

j=1
���E(K j )

���
• Weights of edges of opposing direction would cancel out each other:

c(E(H)) =
l∑
j=1

c(E(K j )) ≥
l∑
j=1

µ( f i )
���E(K j )

��� = µ( f ) |E(H) |

Equation 2:

c(E(H)) = c(E(Ki )) + c(E(K j )) = µ( f i ) |E(Ki ) | + µ( f i+1) |E(Ki+1) |

From both equations it follows that

→ c(E(H))
Equation 2
= µ( f i ) |E(Ki ) | + µ( f i ) |E(Ki+1) |

Equation 1
≥ µ( f i ) |E(H) |

≥ µ( f i ) |E(Ki ) | + µ( f i+1) |E(Ki+1) |

How can we show the last inequality ≥?

|E(H) | ≤ |E(Ki ) | + |E(Ki+1) | µ( f i ) < 0 holds otherwise algorithm terminates

µ( f i ) |E(H) | ≥ µ( f i ) |E(Ki ) | + µ( f i ) |E(Ki+1) |

⇒ µ( f i ) ≤ µ( f i+1)

Proving point (2) of Theorem 71: Consider without loss of generality i, j such that µ( f i ) ≤
n

n−2 µ( fe ) and Ke and K j have no edges of opposing direction ∀ i < j < l.

Build H from (V (G),E(Ki ) ∪ E(Ke )) by removal of opposing edges.

H is subgraph G fi

e ∈ E(Kl ) \G fi ⇒
←−e ∈ E(Ki ) ∪ E(Ki−1) ∪ . . .∪ E(Kl−1) ⇒←−e ∈ E(Ki ) ⇒ e ∈ E(H)

This is a contradiction.

Eulerian H is decomposed into K1, . . . ,Kt cycles in G fi . Analogously as in point (1):

c(E(H)) ≥ u( f ) |E(H) | ,c(E(H)) = µ( f i ) |E(Ki ) | + µ( fe ) |E(Kl ) |

Furthermore it holds that

|E(H) | ≤ |E(Ki ) | + |E(Kl ) | − 2

= |E(Ki ) | + |E(Kl ) | −
2n
n

≤ |E(Ki ) | + |E(Kl ) | −
2
n
|E(Ke ) | with n ≤ |E(Ke ) |
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⇒ E(H) ≤ |E(Ki ) | +
n − 2

n
|E(Ke ) |

µ( f i ) |E(Hi ) | ≤ c(E(Hi )) = p( f i ) |E(Ki ) | + µ( fe ) |E(Ke ) |

µ( f i ) |E(Ki ) | + µ( f i )
n − 2

n
|E(K2) |

⇒ µ( f i ) ≤
n

n − 2
µ( fe )

Theorem 72 (Corollary). During the MMCC algorithm | µ( f ) | is decremented all m · n
iterations by at least factor 1

2 .

Proof. Let Ki ,Ki+1, . . . ,Ki+m be augmented cycles in m continuous iterations of the algo-
rithm. Every cycle has a bottleneck edge⇒ (n+ 1) bottleneck edges⇒ at least one repetition
of an edge⇒ at least one pair K j ,Kl exists for i ≤ j < l ≤ i + m which contain edges of
opposing direction. From Theorem 71 it follows that

µ( f j ) ≤ µ( f j ) ≤
n

n − 2
µ( fe ) ≤

n
n − 2

µ( f i+m )

| µ( f i ) | ≥
n

n − 2
| µ( f i+m ) |

n − 2
n
| µ( f i ) | ≥ | µ( f i+m ) |

After n such sequences of m iterations (= after n · m iterations), µ( f ) is decremented by at
least

(
n−2
n

)n
< 1

e2 <
1
2 .

| µ( fnew) | ≤
( n − 2

n

)n
µ( fold) <

1
2
| µ( fold) |

�

�

Theorem 73. Assume c : E(G) → Q (without loss of generality: c : E(G) → Z)
it holds that: after O(nm log2 n |cmin |) iterations the MMCC algorithm terminates with
cmin = min {±ce |e ∈ E(G)}.

Proof. Correctness. Start with b-flow f0:

u( f0) = min
K cycle in G f0

∑
e∈E (K ) c(e)
|E(K ) |

≥ min
|E(K ) | · cmin

|E(K ) |

µ( f0) ≥ cmin

| µ( f0) | ≤ |cmin |

After m · n · log(n |Cmin |) iterations it holds that

| µ( f ) | <
1
2

log2 n |cmin |
| µ( f0) | =

1
n |cmin |

| µ( f0) | ≤
1
n

| µ( f ) | <
1
n
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Show that
| µ( f ) | <

1
n
⇒ @ negative cycle in G f

µ( f ) =
∑

e∈E (K ∗) c(e)
|E(K∗) |

> −
1
n

��E(K∗) �� ≤ n ⇒
1

|E(K∗) |
≥

1
n

µ( f ) ≤
∑

e∈E (K ∗) c(e)
n

if
∑

e∈E (K ∗)

c(e) < 0

⇒
∑

e∈E (K ∗)

c(e) ≥ n · µ( f ) > n
(
−

1
n

)
= −1

⇒
∑

e∈E (K ∗)

c(e) > −1

and c(e) ∈ Z ∀ e ∈ E(G) where K∗ are cycles of minimum average weight

⇒
∑

e∈E (K ∗)

c(e) ≥ 0

This is a contradiction with
∑

e∈E (K ∗) c(e) < 0.

Time complexity of MMCC. O(mn) per iteration (determination of K∗ as optimal cycle)
and O(nm log n |Cmin |) iterations.

⇒ O(m2n2 log n |cmin |) runtime

�

Theorem 74 (Tarjan, Goldberg, 1989). The MMCC algorithm can be implemented with
O(m3n2 log n) runtime.

A proof for Theorem 74 is not provided.

This lecture took place on 24th of Nov 2014.

13 Successive shortest path algorithm

Also “Shortest Augmenting Path algorithm”

Theorem 75. Let (G,u,b,c) an instance of MKFP and f be a b-flow with minimum costs.
Let P be a shortest s-t-path in regards of cf in G f for any s, t ∈ V (G f ). f ′ results from f
by augmentation along P by γ ≤ min

{
u f (e) : e ∈ E(P)

}
, hence

f ′(e) =



f (e) e < E(P),←−e < E(P)
f (e) + γ e ∈ E(P)
f (e) − γ ←−e ∈ E(P)




Then f ′ is a b′-flow with minimum costs where

b′(v) =



b(v) ∀ v < {s, t}
b(v) + γ v = s
b(v) − γ v = t



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Gf

G
s

s t

t

-γ +γ -γ +γ -γ

Figure 32: Proof of theorem 75

Proof. Assume f ′ is not a cost minimum b′-flow. So there exists a cycle K with negative
weights in G f ′ . Consider H1 = {v(G),E(K ) ∪ E(P)}. H shall be derived from H1 by
removing any pairs of edges of opposing direction.

Observation. H is subgraph of G f because for e ∈ E(K ) \ E(G f ) it must hold that←−e ∈
E(G f ) and (e,←−e ) was already removed.

⇒
←−e < E(H)

• c(E(H)) = c(E(K )) + c(E(P)) < c(E(P))

• degH (v) ≡ 0 mod 2 for v , s, t (because of cycle and path).

H can be decomposed into cycles k1, . . . , kl and a s-t-path.

Figure 33: Proof of theorem 75 (cont.)

c(E(P1)) ≤ c(E(H)) =
l∑
i=1

c(E(Ki ))︸          ︷︷          ︸
≥0

+c(E(P1)) < c(E(P))
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This is contradictory to the selection of P. �

13.1 Initial flow for successively shortest path algorithm

• If c is conservative, start with 0-flow as optimal b-flow with b = 0.

• If c is not conservative, start with

f (e) =
{

u(e) c(e) < 0
0 c(e) ≥ 0

This is optimal for b(v) =
∑
δ+ f (e) −

∑
δ− f (e) ∀ v ∈ V (G) because in G f it

holds that cf (e) = c(←−e ) ≥ 0 ∀ e ∈ E(G f ) with←−e ∈ E(G) and c(←−e ) ≤ 0 and
cf (e) ≥ 0 ∀ e ∈ E(G f ) with e ∈ E(G) and c(e) = cf (e) ≥ 0.

13.2 Successively shortest path algorithm

Algorithm 14 Successively shortest path algorithm
Given. (G,u,b,c) network with u : E(G) → R+ and b : V (G) → R such that∑

V (G) b(v) = 0. c : E(G) → R is conservative
Find. Cost minimum b-flow f or report “there is no b-flow in G”

1: Let f (e) = 0 ∀ e ∈ E(G) b′(v) = b(v) ∀ v ∈ V (G)
2: if b′(v) = 0 ∀ v ∈ V (G) then
3: stop and return f
4: else
5: choose s ∈ V (G) with b′(s) > 0 and t with b′(t) < 0, which is reachable from s

in G f .
6: if there does not exist s, t then
7: stop and report there does not exist a b-flow in G.
8: end if
9: end if

10: Determine a shortest s-t-path P in G f (shortest path in regards of weights cf ).
11: Computeγ = min

{
b′(s),u f (e) ∀ e ∈ P,−b′(t)

}
(we are not allowed to overwrite b′s).

12: Let b′(s) = b′(s) − γ and b′(t) = b′(t) + γ.
13: Augment f along P: f = f ⊕ P (with value γ). go to 2

Theorem 76. Let G be a digraph with u : E(G) → R+ and b : V (G) → R∑
v∈V (G)

b(v) = 0

∃ b-flow in G ⇔ ∀X ⊆ V (G) it holds that:∑
e∈δ+ (X )

u(e) ≥
∑

v∈V (X )

b(v)

The proof for Theorem 76 is given in the practicals.

Theorem 77. If the algorithm terminates with “there does not exist a b-flow in G”, this state-
ment is correct.
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Proof. Let X ⊆ V (G) such that ∀v ∈ X it holds that, v is reachable from s in G f , where f
is the current flow resulting in “there does not exist a b-flow in G” and s ∈ V (G) is a vertex
with b(s) > 0 for which no t ∈ V (G) with b(t) < 0 reachable from s in G f exists.

XC X

f(e) = 0

f(e) = u(e)

s

b'(s) > 0

b(x) ≥ 0

Figure 34: Proof of theorem 77

Then:
b′(v) ≥ 0 ∀ v ∈ X (otherwise we would have found some t)∑

e∈δ+ (X )

u(e) ⊂
∑

e∈δ+ (X )

f (e) +
∑

e∈X×X∩E (G)︸         ︷︷         ︸
all edges in X

−
∑

e∈X×X∩E (G)

f (e)

=
∑
v∈X

*.
,

∑
e∈δ+ (v)

f (e) −
∑

e∈δ− (v)

f (e)+/
-

=
∑
x∈X

b(v) − b′(v) <
∑
v∈X

b(v)

because b(v)−b′(v) ≤ 0 and one of them is smaller, because otherwise the algorithm would
have terminated. f is a b′′ flow where b − b′′ = b′.

∑
u(e) <

∑
b(v)

is a contradiction.

From Theorem 76 it follows then that no b-flow exists.

Does the algorithm terminate? Given b(v) ∈ Z ∀ v ∈ V (G) and u : E(G) → Z+ with
the initial flow using integers. Then it holds that b′ ∈ Z |V (G) | , u f ∈ Z

|E (G) |
+ and y ∈ Z∗+

during the algorithm run.
Z∗+ = {1,2,3, . . .}

After each iteration:∑
v∈V (G)

��b′new(v) ��︸              ︷︷              ︸
before augm.

=
∑

v∈V (G)

���b
′
old(v) ��� − 2y︸                    ︷︷                    ︸

after augm.

≤
∑

v∈V (G)

��b′(v) �� − 2
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after at most
1
2

∑
v∈V (G)

∑
|b(v) | iterations, it holds that b′ = 0

B :=
1
2

∑
v∈V (G)

|b(v) |

Time complexity.
O(B · m · n)

B iterations, O(mn) per iteration⇒ pseudo-polynomial �

Theorem 78. If u : E(G) → Z+,b : V (G) → Z and c is conservative, the successive
shortest path algorithm can be implemented in O(nm + B(m + n log n)).

Proof. Assume wlog. there exists exactly one v ∈ V (G) : b(v) > 0. Otherwise consider
G′ = (V (G) ∪· {s} ,E(G) ∪· {(s,v) : v ∈ V (G),b(v) > 0}).

u = +∞

c = 0

v1

v2

vk

c = 0

c = 0

b(v1) > 0

b(v2) > 0

b(vk) > 0

Figure 35: Proof of theorem 78

b(s) =
∑

v∈V (G)
b(v)>0

b(v)

b(v) =
∑

∀v∈V (G)
b(v)>0

0

b(v) = b(v) for all other capacities u of new edges.

Assumption wlog: All vertices t with b(t) < 0 are only reachable from the single s satisfying
b(s) > 0. All vertices not reachable from s and its incident edges can be removed. �

Theorem 79. In every i-th iteration of the algorithm a potential function π exists:

π : V (G) → R in G fi (cfi (u,v) + π(u) − π(v) ≥ 0) ∀ e ∈ E(G fi )
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Proof. Proof by induction.

Induction base. f = 0,c conservative,G f0 = G ⇒ ∃ potential function π0.

Induction step. Let f i−1 be a flow before the i-th iteration. From the induction hypothesis it
follows that a potential function πi−1 exists. The shortest path computation shall happen in
regards of cfi−1 (u,v) + πi−1(u) − πi−1(v). Let li (v) be the length of the shortest s-v-path in
G fi−1 .

Let πi (v) = πi−1(v) + li (v) ∀ v ∈ V (G fi−1 ). Show πi is a potential function in G fi .

Consider e = (x, y) ∈ E(G) \ E(P) (“old edges”)

li (y) ≤ li (x) + cπi−1 (e) = li (x) + l (e) + πi−1(x) − πi−1(y)

⇒ 0 ≤ c(e) + πi−1(x) + li (x) − (πi−1(y) + li (y)) = c(e) + πi (x) − πi (y)

“new edges” or “augmenting edges”: A new edge←−e = (y, x) is introduced on a path P from
s to t in a graph G fi−1 for some edge (x, y). This new edge constitutes a new graph G fi .

∀ e = (x, y) ∈ P it holds that li (y) = li (x) + cπi−1 (e) = li (x) + c(e) + πi−1(x) − πi−1(y)

⇒ 0 = c(e) + πi (x) − πi (y) (analogously to “old” edges)

⇒ cπi (←−e ) = −cπi (e) = 0 X

O(mn) in first iteration (first potential function). For other O(B) iterations, we use Dijk-
stra’s algorithm to compute the shortest paths in O(m + n log n) per iteration and we com-
pute the new potential function (as given in the induction step) in O(n)

⇒ O(mn + B(m + n log n))

�

This lecture took place on 25th of Nov 2014.

Theorem 80 (Edmonds and Karp, 1972). The capacity scaling algorithm solves the MKFP
with integers b, infinite capacities and conservative weights correctly. The algorithm can be
implemented inO(n(m+n log n) log bmax) runtime where bmax := max {b(v) : v ∈ V (G)}.

Proof. Correctness proof.

Analogously as with successively shortest paths (for γ = 1 we use integer integrity). So we
have to point out that in step 4, the augmentation is valid.

Runtime complexity proof.

A phase of the algorithm is a sequence of consecutive iterations which use the same value of
γ. We prove: There are less than 4n augmentations in every phase.

Assumption. There exists a phase with≥ 4n augmentations. Let f be a flow at the beginning
of the phase. Let g be a flow at the end of the phase. g − f is a flow. Let b′′ be balance values
of g − f :

b′′(v) :=
∑

e∈δ+ (v)

(g − f )(e) −
∑

e∈δ− (v)

(g − f )(e)
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Algorithm 15 Capacity scaling algorithm

u(e) = +∞ ∀ e ∈ E(G)

b(v) ∈ Z ∀ v ∈ V (G)

c : E(G) → R conservative

Given. (G,c,b),
∑

v∈V (G) b(v) = 0,c conservative
Find. b-flow with minimum costs or @ b-flow in (G,c,b)

1: b′(v) := b(v) ∀ v ∈ V
2: f (e) := 0 ∀ e ∈ E(G)
3: if bmax > 0 then
4: y = 2 blog bmax c with (bmax := max {b(v) : v ∈ V (G)}).
5: else
6: return f
7: end if
8: if b′ = 0 then
9: return f

10: else
11: select vertex s and t with b′(s) ≥ γ
12: select vertex b′(t) ≤ −γ such that t is reachable from s in G f .
13: if no such pair exists then
14: go to 22
15: end if
16: end if
17: Determine a s-t-path P in G f with minimum weight (in regards of cf ).
18: Let b′(s) := b′(s) − γ
19: Let b′(t) := b′(t) + γ (hence γ flow units are going through P)
20: f := f ⊕ P
21: go to 8
22: if y = 1 then return “no b-flow exists”
23: else
24: y := γ

2
25: go to 8
26: end if
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e
s t

b'(t) ≤ -γ

P in Gf

b'(s) ≥ γ

Figure 36: Capacity scaling algorithm proof
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• It holds that
∑

v∈V (G) |b′′(v) | ≥ 8nγ.
Rationale. f , f2, f3, . . . , f l = g

y := f, f1, f2, …, fl

s1
t1

Figure 37: Capacity scaling algorithm proof rationale

bf1 (s1) = bf (s1) + γ

bf1 (v) = bf (v) ∀ v ∈ V (G) \ {t1, t2}
bf1 (t1) = bf (t1) − γ

⇒
∑

v∈V (G)

���bf1 (v) ��� =
∑

v∈V (G)

���bf (v) ��� + 2γ

After ≥ 4n iterations it holds that∑
v∈V (G)

���bg (v) ��� ≥
∑

v∈V (G)

���bf (v) ��� + 8nγ

⇒
∑

v∈V (G)

��b′′(v) �� ≥ 8nγ

•

S :=
{
x ∈ V (G) : b′′(x) > 0

}
S+ :=

{
x ∈ V (G) : b′′(x) ≥ 2γ

}
T :=

{
x ∈ V (G) : b′′(x) < 0

}
T+ :=

{
x ∈ V (G) : b′′(x) ≤ −2γ

}

Is there a path from S+ toT+ in G f ? No, otherwise the 2γ phase would not be finished
yet.
Let X be the set of reachable vertices from S+ in G f . ⇒ the total value of all sinks
reachable from S+ is ≥ n(−2γ) = −2nγ.
In figure 39, if the upper edge does not exist, it is saturated, but u(0) = ∞⇒ edge
does not exist; analogously the other direction.
Because g-f is a b′′-flow, it holds that∑

x∈S+

b′′(x) < 2nγ
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S+
T+

S T

Figure 38: Capacity scaling algorithm: sets S, S+, T and T+

X XC
0

Figure 39: Capacity scaling algorithm: sets X and XC

because in general it holds that ∑
x∈X

b′′(x) = 0

because

0 =
∑

v∈V (G)

b′′(v) =
∑
v∈X

b′′(v) +
∑

v∈XC

b′′(v) =
∑
x∈X

b′′(v)

=
∑

v∈XC

*.
,

∑
e∈δ+ (v)

f (e) −
∑

e∈δ− (v)

f (e)+/
-
= inner edges get cancelled =

=
∑

e∈δ+ (xc )

f (e)︸︷︷︸
=0

+
∑

e∈(X ′×XC )∩E (G)

f (e) −
∑

e∈(XC×XC )∩E (G)

f (e) = 0

⇒
∑

v∈V (G)

��b′′(v) �� = 2
∑
x∈S

b′′(v) = 2 *.
,

∑
x∈δ+

b′′(v) +
∑

x∈S\S+

b′′(v)+/
-
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< 2(2nγ + 2nγ) = 8nγ

This is a contradiction to our assumption.
Hence there are < 4n augmentations per phase. The number of phases equals to the
number of halvings of 2 blog bmax c until γ < 1 is reached.

⇒ number of phases ≤ log bmax + 1

⇒ O(n log bmax) iterations

with reduced costs from Theorem 76

O(mn + (m + n log n)n log bmax)

= O((m + n log n)n log bmax)

�

14 Time-dependent dynamic flow

This lecture took place on 1st of Dec 2014.

• Transit time per edge

• Value of flow over edge e can vary in time process

fe (t) flow values at timestamp t at edge e

Definition 81. Let (G,u, s, t) be a network with capacities u : E(G) → R+, source s, sink t
and transit times l : E(G) → R+ (e 7→ l (e)) and a time horizon [0,T] with T ∈ R+. Then a
timedependent s-t-flow s is a Lebesgue-measurable function fe : [0,T]→ R+ ∀ e ∈ E(G)
with all properties:

• fe (ζ ) ≤ u(e) ∀ e ∈ E(G) ∀ ζ ∈ [0,T]

• ex f (v,a) :=
∑

e∈δ− (v)
∫ max{0,a−l (e)}

0 fe (ζ ) dζ −
∑

e∈δ+ (v)
∫ a

0 fe (ζ ) dζ ≥ 0 ∀ v ∈
V (G) \ {s} ∀ a ∈ [0,T]

value( f ) := ex f (t,T ) is called value of flow at timestamp T .

14.1 Max-Flow-over-time problem (MFoTP)

Given. (G,u, s, t, l), T ∈ R+

Find. Determine a timedependent flow fe : [0,T]→ R+ ∀ e ∈ E(ζ ) with maximum value
f

Theorem 82. (Ford, Fulkerson, 1958) The MFoTP can be solved with the same time com-
plexity like MKFP.
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Proof. MFoTP can be reduced to (static) MKFP. Without loss of generality: There are no
edges ending in s in G (flow delay!). Construct a new network (G′,u,0,c).

G′ = (V (G),E(G) ∪ {(t, s)})

u : E(G′) → R+

with u(e) as the same like in (G, s, t,u, l) for e ∈ E(G) and u(t, s) =
∑

e∈E (G) u(e).

c : E(G′) → R

c(e) =
{

l (e) e ∈ E(G)
−T e = (t, s)

Determine a circulation f ′ with minimum costs in (G′,u,0,c).

Theorem of Gallai: There exists a familyC of cycles ing′with h : C → R+∗, K 7→ h(K ) > 0
with |C | = O(|E(G′) |) and f (e) =

∑
K ∈C,e∈K h(K ) ∀ e ∈ E(G′).

f ′ has minimum costs→ c(K ) ≤ 0 ∀K ∈ C .

In the other case if K∗with c(K∗) > 0 exists, consider f ′′with f ′′(e) =
∑

K ∈C\{K∗},e∈K h(K ) ∀ e ∈
E(G′). f ′′ is circulation.

c( f ′′) =
∑

e∈E (G′)

f ′′(e) · c(e) =
∑

K ∈C\{K∗}
c(K ) <

∑
K ∈C

c(K ) = c( f ′)

This would be a contradiction.

(t, s) ∈ K ∀K ∈ C because (t, s) is the only edge with negative costs

Let e = (v,w) ∈ K . Denote dK
e the length of the path of s to v in K in regards of costs c.

Define
f ∗e (ζ ) =

∑
k ∈C,c (K )<0

e∈K,dK
e ≤ζ≤d

K
e −c (K )

ζ≤T−l (e)−dK
w, t

dK
w, t+ζ+l (e)≤T

h(K ) ∀ e ∈ E(G) ∀0 ≤ ζ ≤ T

Define
c(k) = dK

e + l (e) + dK
w, t − T

dK
e − c(K ) = T − l (e) − dK

w, t

When is s0 a f ∗e (ζ ) dynamic flow?

f ∗e (ζ ) =
∑

h(K ) ≤
∑
K ∈C

c (K )<0
e∈K

h(K ) = f ′(e) ≤ n(e) ∀ e ∀ ζ ∈ [0,T] (5)

ex f (v,a) =
∑
e∈δ−

∫ max{0,a−l (e)}
0

· · · −
∑

e∈δ...

∫ a

0
· · ·

!
≥ 0 (6)

∑
e∈δ− (v)

∑
K ∈C

c (K )<0
e∈K

h(K ) −
∑

e∈δ+ (v)

∑
K ∈C

c (K )<0
e∈K

h(K ) =
∑

e∈δ− (v)

f ′(e) −
∑

e∈δ+ (v)

f ′(e) = 0
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because f ′ is circulation

value( f ∗) = ex f ∗ (t,T ) =
∑

e∈δ− (t )

∫ max{0,T−l (e)}
0

f Ke (ζ ) dζ︸                                    ︷︷                                    ︸
A

!
= −

∑
e∈E (G′)

c(e) f ′(e)

A =
∑

e∈δ− (t )

∫ max{0,T−l (e)}
0

∑
K ∈C

c (K )<0
e∈K

dK
e ≤ζ≤d

K
e −c (K )

h(K ) dζ

=
∑

e∈δ− (t )

∑
K ∈C

c (K )<0
e∈K

h(K )
∫ dK

e −c (K )

dK
e

1 dζ =
∑

e∈δ− (t )

∑
K ∈C

c (K )<0
e∈K

h(K )(−c(K ))

=
∑

e∈δ− (t )

∑
K ∈C

c (K )<0
e∈K

h(K ) *
,
−

∑
e∈K

l (e) + T+
-

=
∑

e∈E (G)

−l (e)
∑
K ∈C

c (K )<0
e∈K︸ ︷︷ ︸
f ′(e)

h(K ) + T *.
,

∑
e∈E (G)

f ′(e) −
∑

e∈E (G)

f ′(e)+/
-

=
∑

e∈E (G)

−l (e) f ′(e)

�

15 Matchings

15.1 Definitions and optimality criterion

Definition 83. G = (V,E) is undirected. M ⊆ E is called matching if ∀ e1,e2 ∈ M :
e1 ∩ e2 = ∅ (in words: no edges share a vertex). A vertex v is matched by M if ∃e ∈ M with
v ∈ e. A matching M is called perfect if every vertex of M is matched by M . A matching
M is called maximal if for every matching M ′, |M ′ | ≤ |M |. The matching number of G is
defined as

V(G) B max
{
|M | : M is a matching

}
A vertex cover is a subset C ⊆ V (G) such that e ∩ C , ∅ ∀ e ∈ E(G). A minimum vertex
cover is a vertex cover of minimum cardinality. The vertex cover number of G is defined as

C(G) B min {|C | : C is vertex cover}
Observation 84. For a triangle (3 vertices, 3 edges):

C(K3) = 2 V(K3) = 1
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Theorem 85. Let M is a matching. Let C is a vertex cover. It holds that,

V(G) = max
M matching

|M | ≤ min
C vertex cover

|C | = C(G)

⇒ V(G) ≤ C(G)

Definition 86. Let G be an undirected graph and M a matching. A path in G is called m-
alternating if its edges are alternatingly assigned to the matching and not assigned. Hence

P = (v0,v1,v2, . . . ,vk )

(vi−1,vi ) ∈ M ⇒ vi ,vi+1 < M and
(vi−1,vi ) < M ⇒ vi ,vi+1 ∈ M ∀ 1 ≤ i ≤ k

If a M-alternating path starts and ends with a non-matched vertex, it is called M-augmenting.
An example is given in figure 40.

Observation 87. Let M ′ B M4P where M is a matching and P is an M-augmenting path:

M ′ = (M \ P) ∪ (P \ M)

• We show: M ′ is a matching (compare with figure 41). Let e1,e2 ∈ M ′

– e1,e2 ∈ M \ P ⇒ e1 ∩ e2 = ∅

– e1,e2 ∈ P \ M ⇒ e1 ∩ e2 = ∅

– e1 ∈ M \ P,e2 ∈ P \ M ⇒ e1 ∩ e2 = ∅

• We show: |M ∩ P | = |P \ M | − 1.
It holds that, |M ′ | = |M | + 1, because P contains one matching edge for one non-
matching edge and one additional non-matching edge.

M ′ = (M \ P) ∪ (P \ M)

It is trivial to see that (M \ P) and (P \ M) are disjoint. Hence,
�� M ′ �� = |M \ P | + |P \ M |

For any two sets M and P it holds,

M = (M ∩ P) ∪ (M \ P)

Also M ∩ P and M \ P are disjoint. Hence,

|M | = |M ∩ P | + |M \ P |

Followingly,

|M | + 1 = �� M ′ ��
|M ∩ P | + |M \ P | + 1 = |M \ P | + |P \ M |

|M ∩ P | = |P \ M | − 1

We conclude:
⇒ |M ∩ P |︸   ︷︷   ︸

red edges in figure 40

= |P \ M |︸   ︷︷   ︸
blue edges in figure 41

−1

We call P M-augmenting.
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Figure 40: M-augmentating path example. Red edges define a matching, blue edges define
an m-augmenting path from 3 to 7. P = (3,4, 1,5,2,6,8,7).
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4
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Figure 41: M ′ of the M-augmentating path example. You can immediately recognize that it
is indeed a matching and |M | = 3 whereas |M ′ | = 4.

Figure 42: An M-augmenting path (blue) and a maximal matching (red). You can exchange
M ∩ P with the edges of M4P and will end up with a maximal matching.
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This lecture took place on 2nd of Dec 2014.

Theorem 88 (Berge, 1957). Let M be a matching in G. M is maximal if and only if there is
no M-augmenting path in G.

Proof. Direction of proof:⇐
Proof by contradiction: Assume there exists a M-augmenting path.
Then M is not maximal (see section about max-flows)1.

Direction of proof:⇒
Proof by contradiction: Assume M is not maximal and no M-augmenting path exists.

1. Then there exists a matching M ′ such that |M ′ | > |M |.
2. Consider D = M4M ′ (= (M \ M ′) ∪ (M ′ \ M)). It holds that,

degD (v) ≤ 2 ∀ v ∈ V (G)

because if more than three edges touch vertex, then edges in M and M ′ cannot
be alternating.

3. D consists of the following components:
• Isolated vertices
• Cycles with alternating edges
• Paths with alternating edges with distinct end points

Cycles must have an even cardinality, because edges are alternating, because oth-
erwise two edges of M or M ′ are not disjoint.

4. M ′ is larger than M according to (1.), followingly one component of D has more
edges from M ′ than M2

5. This component cannot be an isolated vertex (no edges) or cycles with alternat-
ing edges (contradiction to even cardinality). So it must be a path. This path is
alternating.

This is a contradiction to our assumption, that no M-augmenting path exists.

�

Algorithmic idea.

1. Start with arbitrary matching M = M0 (eg. M0 = ∅).
2. While there exists an M-augmented path P, repeat

M := M4P

3. M is maximal. Return M .
1Informally put: make matched edges not matched, vice versa and you retrieve a larger matching.
2 The two vertices of the additional edge cannot occur in two different components, because edges are not in-

cluded if they occur neither in M nor M ′ or in both. So if you start with a vertex matched only by M ′ you get an
alternating sequence of edges until you end up with another vertex only matched by M ′.
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15.2 Matchings in bipartite graphs

Theorem 89. The M4P maximum matching problem (MMP) for bipartite graphs is a spe-
cial case of the max-flow problem (MFP).

Proof. Let G = (A ∪· B,E) be an undirected, bipartite graph. Let (G′,u, s, t) be a network
where G′ is a digraph.

s, t < A ∪· B s , t

V (E ′) = A ∪· B ∪· {s, t}
E(G′) = {(s,a) : a ∈ A} ∪ {(b, t) : b ∈ B} ∪· {(a,b) ∈ E(G),a ∈ A,b ∈ B}

G

A B

G'

A B

s t

1

1

1

1

1

1

1 1

1

1

1

1
1
1

Figure 43: An example for a bipartite graph G converted into a max-flow problem
(G′,u, s, t). It is very interesting to recognize that the selection of vertices for set A or B
is irrelevant. So you can also make the flow go from right to left.

Observation 90. • Every matching M in G corresponds to a complete flow FM in G′.

• Every flow f in (G′,u, s, t) corresponds to one matching Mf in G.

How? We show those relations formally:

• Given a bipartite graph G = (A∪̇B,E). Consider a flow fM :

fM (e) =




1 e = (a,b) ∈ A × B,e ∈ M
0 e = (a,b) ∈ A × B,e < M
1 e = (s,a),a ∈ A,matched
0 e = (s,a),a ∈ A,unmatched
1 e = (b, t),b ∈ B,matched
0 e = (b, t),b ∈ B,unmatched
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value( fM ) =
∑
a∈A

f (s,a)

= |{a : a ∈ A, f (s,a) = 1} | = |{a : a ∈ A,a is matched} | = |M |
• Let f be a s-t-flow in (G′,u, s, t) with integer values 0 and 1.

⇒ f (e) ∈ {0, 1} ∀ e ∈ E(G′)

Consider Mf B {e ∈ A × B : f (e) = 1}. Claim: Mf is matching.
Proof by contradiction: Consider e1 = (a,b1) ∈ M and e2 = (a,b2) ∈ M . In a
matching no edges e1 and e2 exist which share a common vertex. So, this statement
must turn out to be wrong.

⇒
∑

e∈δ− (a)

f (e) = f (s,a) = 1

⇒
∑

e∈δ+ (a)

f (e) = f (e1) + f (e2) = 2

This is a contradiction to the flow conservation condition. f cannot be a flow, but we
assumed that. So actually, no two edges e1 and e2 exist which share a common vertex.
Analogously to the first observation, it holds that

value( f ) = ��� Mf
��� .

Given a bipartite graph (A∪· B,E) and you want to determine a maximum matching. Then
create one supersource and one supersink. Connect the supersource with all vertices of set A
and all vertices of set B with the supersink. Every edge between A and B becomes a directed
one from A to B. Assign 1 as capacity to all edges. The max-flow of this network (G,u, s, t)
yields a maximum matching. Figure 43 illustrates this construction. �

MMP in bipartite graphs is solvable with O(mn) runtime, eg. with Ford-Fulkerson in n
iterations (flow extension by 1 unit per iteration) and O(m) runtime for determination of
some s-t-path in G f .

V(G) ≤ C(G)

In bipartite graphs equivalence holds (Kőnig, 1937):

Theorem 91. Let G = (V1 ∪· V2,E) be a bipartite graph. Then it holdsV(G) = C(G).

Proof. V(G) ≤ C(G) has been shown for general graphs. Show that C(G) ≥ V(G).

Consider MMP as MFP (as in Figure 43). Let f be a maximum s-t-flow of integer values. Let
δ(s) be the corresponding minimum cut.

u(δ(s)) = value( f )

There does not exist e ∈ (S ∩ V1) × (S′ ∩ V2).

Assumption. There exists e = (a,b). Case distinction:

1. f (e) = 0⇒ e ∈ E(G f ) ⇒ b ∈ S. This is a contradiction.
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s

V1 V2

b

a

Figure 44: Bipartite matching – Residual graph

2. f (e) = 1⇒
∑

e∈δ− (a) f (e) −
∑

e∈δ+ (a) f (e) = 0

f (s,a) =
∑

e∈δ+ (a)

f (e) ≥ 1⇒ f (s,a) = 1

Hence a is only reachable from b. b < S ⇒ a is not reachable. Contradiction.

⇒ @e ∈ (S ∩ V1) × (SC × V2)

Construct cover: C = (V1 ∩ SC ) ∪ (V2 ∩ S).

Compare value( f ) and

|c | = ���V1 ∩ SC ��� + |V2 ∩ S | = ���V1 ∩ SC ��� + {(a, t) : a ∈ S}
value( f ) = u(δ(s)) =

∑
e∈δ+ (S)

u(e) = ��δ+(S) ��
!
=

���S
C ∩ V1

��� + |S ∩ V2 |

�

Theorem 92 (Hall’s marriage condition). Let G be a bipartite graph (A ∪· B,E) then G
has a covering matching for A if and only if |Γ(X ) | ≥ |X | ∀ X ⊆ A where Γ(X ) ={b ∈ B : ∃a ∈ X, (a,b) ∈ E(G)}.

Theorem 93 (Marriage corollary). Let G be a bipartite graph with V (e) = A∪· B and |A | =
|B |. G has a perfect matching if and only if ∀ X ⊆ A with |Γ(X ) | ≥ |X | holds.
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Figure 45: Bipartite graph

15.3 Theorem of Tutte

Consider general graphs again. Let X ⊆ V (G). We define3:

G \ X B (V \ X,{(u,v) ∈ E | u < X ∧ v < X}).

Let qG (X ) be the number of odd (in terms of number of vertices) connected components
in G \ X . Then we can observe: qG (X ) > |X | ⇒ @ perfect matching in G.

⇒ qG (X ) ≤ |X | ∀ X ⊆ V (G)︸                             ︷︷                             ︸
Tutte condition

. . . is necessary and sufficient for existence of a perfect matching in G

Definition 94. A graph G is called factor-critical, if G \{v} (also denoted G \ v) has a perfect
matching ∀ v ∈ V (G). A matching M is called almost perfect if G has exactly one unmatched
vertex.

Theorem 95. Let G = (V,E) be a graph, then

qG (X ) − |X | ≡ |V | mod 2 ∀ X ⊆ V

Proof.

V (G) = |X | +
k∑
i=1
|Xi |

3In words: X and all incident edges with X are removed from the graph G
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• Let Xi for 1 ≤ i ≤ k be the connected components of G\X . Without loss of generality
the odd connected components are the qG (X ) first ones.

|V (G) | ≡ |X | +
dG (X )∑
i=1
|Xi | mod 2

• Because
|Xi | ≡ 1 mod 2 ∀ 1 ≤ i ≤ qG (X )

it holds that
qG (X )∑
i=1
|Xi | ≡ qG (X ) mod 2

From both statements it follows that

|V (G) | ≡ |X | + qG (X ) mod 2

V (G) − 2 |X | ≡ |X | + qG (X ) − 2 |X | mod 2

V (G) − 2 |X | ≡ qG (X ) − |X | mod 2

⇒ V (G) ≡ qG (X ) − |X | mod 2

�

Theorem 96. Let G be a graph. G contains a perfect matching if and only if the Tutte con-
dition is satisfied, hence qG (X ) ≤ |X | ∀ X ⊆ V (G).

Proof. Necessary? By observation a necessary condition.

Sufficient? Assume Tutte condition is satisfied. Show that a perfect matching exists in G.
Proof by induction over |V (G) |.

|V (G) | ≤ 2 statement holds

For V (G) = 1:
|X | = 0 |X | = 1 qG (∅) = 1

!
< 0

For V (G) = 2:

• No edge between two vertices.

X = ∅ qG (X ) = 2 > 0 (no perfect matching)

• Edge between both vertices.

X = ∅ qG (X ) = 0 ≤ 0 X

|X | = 1 qG (X ) = 1 ≤ 1 X

|X | = 2 qG (X ) = 0 ≤ 2 X

�
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This lecture took place on 9th of Dec 2014.

Theorem 97 (Theorem by Tutte). Let G be a graph with a perfect matching⇔ qG (x) ≤
|X | ∀ X ⊆ V (G) (tutte condition).

Less formally: A graph G = (V,E) has a perfect matching if and only if every subgraph G′

of any U ⊆ V (G) has at most |U | connected components with an odd number of vertices.

The Theorem by Tutte is a generalization of Theorem 92 (Hall’s marriage condition).

Proof. Induction over |V (G) | for non-trivial direction ⇐. Induction base |V (G) | = 1
(done).

Induction base. Condition holds ∀G with |V (G) | < n.

Induction step. Condition holds for G with |V (G) | = n.

Let G with |V (G) | = n such that tutte condition is satisfied.

Observation 98 (|V (G) | is even). If |V (G) | is odd: Let X = ∅ and qG (∅) = number of
connected, odd components in G.

|V (G) | =
qG (∅)∑
i=1
|V (Ki ) | +

l∑
i=qG (∅)+1

|V (Ki ) | ⇒ |V (G) | ≡ qG (∅) mod 2

|V (Ki ) | ≡ 1 mod 2

⇒ qG (∅) ≥ 1 > 0 = |∅ |

The Tutte condition is not satisfied. Contradiction.

Observation 99. Every X = {v} with v ∈ V (G) is barrier. From the last proposition it
follows

qG (V ) − |X | ≡ |V (G) | mod 2 ∀ X ⊆ V (G)

Especially:
qG ({v}) − |{v} | is even⇒ qG ({v}) even

⇒ qG ({v}) ≥ 1
from tutte condition: qG ({v}) ≤ |{v} | = 1

}
⇒ qG ({v}) = 1 = |{v} | ⇒ {v} is barrier

Let X is a cardinality-maximal barrier; hence qG (x) = |X |.

Observation 100. G − X has no even connected component. Assume there exists an even
connected component K . Let v ∈ V (K ). Consider X ∪ {v}.

qK ({v}) − |{v} | ≡ |V (K ) | mod 2⇒ qK ({v}) is odd

qG (X ∪ {v}) = qK ({v}) + qG (X ) ≥ 1 + |X | = |X ∪ {v} |
with tutte condition it follows that qG (X ′) = |X ′ | ⇒ |X ′ | > |X | where X ′ is barrier.

qG (X ) := number of odd connected components in G − X

qG ({3}) = 1

Definition 101. A set X ⊆ V (G) which satisfies the tutte condition with = is called barrier.
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Observation 102. Every odd connected component of G − X is factor-critical.

Assume there exists a connected component K of G−X , which is not factor-critical.⇒ ∃v ∈
V (K ) such that K−{v}does not have a perfect matching. Because |V (K − {v}) | < |V (G) |
the induction hypothesis holds for K − {v}. The tutte condition is not satisfied in K − {v}.

⇒ ∃Y ⊆ V (K ) \ {v} with qK−{v}(Y ) > |Y |

Consider X ∪ Y ∪ {v} (X,Y,{v} pairwise disjoint)

qG (X ∪ Y ∪ {v}) = qG (X ) − 1 + qK (Y ∪ {v})

= |X | − 1 + qK−{v}(Y ) ≥ |X | − 1 + |Y | + 2

= |X | + |Y | + 1 = |X ∪ Y ∪ {v} |
⇒ X ∪ Y ∪ {v} is barrier

|X | is largest barrier.

End of proof for observation 4.
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Let G′ be a bipartite graph with v(G′) = X ∪· Z where

Z =
{

zi : zi corresponds to contracted Ki , 1 ≤ i ≤ qE (X )
}

Inner vertices in X get deleted. Edges between X and Z are created by contraction.

We show G′ satisfies the Hall condition, hence

∀ A ⊂ Z satisfies |Γ(A) | ≥ |A |

Assume that Hall condition is unsatisfied⇒ ∃A ⊆ Z with |ΓG′ (A) | < |A |.

qG (ΓG , (A)) ≥︸︷︷︸
?

|A | > |ΓG (A) |

Tutte condition is unsatisfied. Contradiction.

∃matching in G′ that matches all vertices in Z hence all vertices in X because |X | = qG (X )
can be fully matched inside of every Ki , because Ki is factor-critical.

∀ 1 ≤ i ≤ qG (X )

Hence a perfect matching in G is created. �
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16 Blossom algorithm

This algorithm by Edmonds determines a perfect (or cardinality-maximal) matching in any
arbitrary graph.

Definition 103. Let G be a graph and M be a matching. A tree with root r in T is called
alternating, if

• the root r is unmatched.

• every path of r to any vertex v in T is an alternating path.

• all vertices v ∈ V (T ) \ {r} are matched with edges in T .

The root is per definition an even vertex. Every vertex in T with even distance from r is called
even vertex. All remaining vertices are odd vertices.

An alternating forest F where

• Every connected component is an alternating tree

• Every exposed vertex is a root of one alternating tree

Observation 1. Let A(T ) be the set of odd vertices. Let B(T ) be the set of even vertices.
|B(T ) | = |A(T ) | = 1.

Let v < V (T ). Let u ∈ B(T ). Case distinction:

• v is matched by (r,w) < E(T ) with T ′ = T + (u,v,w). T ′ is alternating and greater
than T .

• v1 is not matched. (u1,v1) < E(T ) with (u1,v1) < M . P = (r, . . . ,u1,v1) is an aug-
menting path. Hence M ⊕ P is a larger match than M .

Definition 104. Let G be a graph and M be a matching of G and T be an alternating tree in
terms of M in G. T is called degenerated (dt. verkümmert) if ∀u ∈ B(T ), (u,v) ∈ E(G) ⇒
v ∈ A(T ) is implied.
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Theorem 105. Let M be a matching in M in G and T be an alternating degenerated tree.
Then G has no perfect matching.

Proof. We show that the tutte condition is violated. Let X := A(T ).

qG (X ) ≥ |B(T ) | > |A(T ) | = |X |

Last case: ∃ BB-edges hence edges (v1,v2) ∈ E(G) with v1,v2 ∈ B(T ). Such an edge closes
an odd cycle with the tree. Such a cycle will be contracted. �

This lecture took place on 18th of Dec 2014.

Theorem 106. Let C be an odd cycle in G and let G′ be a graph which results by contraction
of C. Let M ′ be a matching in G′. Then there exists a matching M in G with

• M ⊂ M ′ ∪ E(C)

• the number of non-matched vertices of M in G equals the number of non-matched
vertices of M ′ in G′

Proof. Build M such that M ′ ⊆ M and

• C in E ′ is matched by M ′.
Let e0 ∈ M ′ be incident with C (super-vertex in G′) and let v0 ∈ V (G) such that
e0 ∈ M ′ is built by contraction of corresponding vertices starting from v0. Extend M
as far as possible by cycle edges starting from v0 and initially with the second edge.

• Let c ∈ G′ not be matched. Extend M as far as possible with cycle edges (arbitrary).

As exercise: Show that in both points it holds that the number of odd vertices of M ∈ G
equals the number of odd vertices of M ′ in G′. �
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Algorithm 16 Edmonds blossom algorithm
Given. Graph G and matching M in G
Find. Perfect matching in G or report “@ perfect matching in G”
Recall. A(T ) is the set of odd vertices. B(T ) is the set of even vertices.

1: M ′ := M , G′ := G
2: if all vertices in G′ are matched then
3: return perfect matching M
4: else
5: r is unmatched
6: T := ({r} ,∅), B(T ) := {r}, A(T ) := ∅
7: end if
8: while ∃(v,w) ∈ E(G′) with v ∈ B(T ),w < A(T ) do
9: if w < V (T ) and w is unmatched then

10: use (v,w) to augment M ′

11: if ∃ no odd vertex in G′ then
12: return perfect matching M ′

13: else
14: replace T by ({r} ,∅) where r is a (new) unmatched vertex in G′

15: end if
16: else if w < V (T ) and w is matched in regards of M ′ then
17: use (v,w) and the matching-edge incident with w to extend T .
18: else if w ∈ B(T ) then
19: use (v,w) to contract
20: update M ′, T ′ and G′

21: end if
22: end while
23: return “G has no perfect matching”
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Figure 46: Edmonds blossing contraction: example for contraction (M ′ has 2 off vertices in
G′)

Corollary. If Edmonds Blossom Algorithm terminates with a perfect matching (in a con-
tracted graph), then G contains a perfect perfect matching. This perfect matching can be
reconstructed as explained in Theorem 106 with an iterative approach.

Theorem 107. Let G′ be a graph constructed by iterative contraction of odd cycles as in
Edmonds Blossom Algorithm. Let M ′ be a matching in G′ and T be a M ′-alternating tree
in G, such that ∀w ∈ A(T ) is w a contracted vertex.

It follows if T becomes degenerated (no edges left), then G has no perfect matching.

Proof. Assign one S(v) ⊆ V (G) for every v ∈ V (G′) such that

S(v) =



{v} v is not contracted⋃
w∈C S(w) v is contracted, created by contraction of cycle C

Try to find a set X ⊆ V (G) which does not satisfy the Tutte-Berge condition: q(G − x) ≤
|X | ∀ X ⊆ V (G).

X = A(T ) ⊆ V (G)

q(G − X ) ≥ |B(T ) |

⇒ ∀ v ∈ B(T ),S(v) is a connected component of G − X and

|S(v) | =
������

⋃
w∈C

S(w)
������
=

∑
w∈C

|S(w) | ≡ 1 mod 2

if |S(w) | are all odd (induction of number of iterations)

⇒ q(G − X ) ≥ |B(T ) | > A(T )

Contradiction. �

Theorem 108. Edmonds Blossom Algorithm terminates after O(n) matching augmenta-
tions, O(n2) contractions and O(n2) extensions of the tree. It decides correct whether a
perfect matching exists.

99



Proof. Correctness is given by Theorems 106 and 107.

The number of iterations is the number of matching augmentations≤ b n2 c = O(n), because
the matching will never be shrunken. Count the number of contractions (equals number of
tree extensions) between every two possible consecutive M augmentations.

Number of contractions lose at least 1 vertex per contraction

Number of tree augmentations Number of vertices outside of tree decrements by at least
one vertex per tree extension.

It follows that there are O(n) contractions and O(n) tree extensions. �

Theorem 109. Edmonds Blossom Algorithm can be implemented with runtimeO(nm log n).

This lecture took place on 8th of January 2015: Welcome to 2015!.

16.1 Using Edmonds Blossom Algorithm to determine a matching with max-
imum cardinality

Given. Unweighted instance G = (V,E)

Find. Matching M∗ in G with |M∗ | = maxM is matching in G |M |

Apply Edmonds Blossom Algorithm:

• Output is a perfect matching: M∗ =⇒ M∗ is a solution to P

• Output claims “no perfect matching exists in G”

Let T1 be an degenerated tree, which results in output of the second kind. Remove T1(E(T1))
from G (hence the edges ofT1), let resulting graph be G1. Let M1 be the matching evaluated by
Edmonds Blossom Algorithm. Let M2 := M1 \ E(T1). Apply Edmonds Blossom Algorithm
in G1 with initial matching M2 (probably M2 = ∅). At termination either

• M2 (transformed) is perfect matching in G1

• there does not exist a perfect matching in G1. Let T2 be an degenerated tree regarding
M2 in G.

Repeat this procedure as long as either a perfect matching in the current graph can be found
or no edges survive.

Let k be the number of repetitions (must be finite, because every repetition removed at least
one edge).

Case distinction:

1. k repetitions terminate with degenerated tree. Let T1,T2, . . . ,Tk be degenerated trees
and M1,M2, . . . ,Mk the matchings at termination at the corresponding iterations of
Edmonds Blossom Algorithm.

2. k repetitions terminate with a perfect matching in Gk−1. Let T1, . . . ,Tk−1 be degener-
ated trees and M1, . . . ,Mk matchings as in the first case.
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Let M :=
⋃k

i=1 Mi . We show M is solution to the given problem. Removal from degenerated
tree isolates all vertices in tree because if not all incidenting edges are in the tree, the tree is
degenerated.

Definition 110. def (M) := |V (G) | − 2 |M | = |unmatched vertices | (called deficiency).

Let B(Ti ), A(Ti ) be the set of even and odd vertices in Ti with 1 ≤ i ≤ k respectively.

X :=
k (k−1)⋃
i=1

A(Ti )

B

B B

A A

AAAAA

M

Figure 47: Basic structure when computing X

qG (X ) ≥
k∑
i=1
|B(Ti ) |

because in every even vertex create a singleton in G \ X .

For the first case:

k∑
i=1

(|A(Ti ) | + 1) = k +
k∑
i=1
|A(Ti ) | = k + |X |

qG (X ) − |X | ≥ k = def (M)

Analogously for the second case: It always holds that qG (X ) − |X | ≥ def (M).

qX (G) − |X | ≤ def (M)

holds for all matching M and for all X ⊆ V (G) because At least qG (X ) − |X | stay un-
matched.

Hence matching satisfies def (M) = qG (X ) − |X |. Hence M has minimum deficiency.
Hence M has maximum cardinality. So a solution to our given problem is given.

Remark. Implicitly this is an algorithmical proof for Beige-Tutte.

min
M matching in G

def (M) = max
X ⊆V (G)

(qG (X ) − |X |)
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17 Weighted matching problems and complete unimodular ma-
trices

17.1 Weighted matching problems

Max-Weight-Matching problem (Max-WMP)

Given. G = (V,E) is unweighted, c : E(G) → R

Find. Determine a matching M∗ such that c(M∗) =
∑

e∈M∗ c(e)= maxM matching in G c(M).

Min-Weight Perfect Matching Problem (MinWPMP)

Given. G = (V,E) is unweighted, c : E(G) → R

Find. Determine a perfect matching M∗ with c(M∗) = min M perfect matching in Gc(M)
or “no perfect matching exists in G”.

Observation. MaxWMP and MinWPMP are equivalent.

Proof. First, we prove MaxWMP is polynomially reducible to MinWPMP. MaxWMP⇒
MinWPMP.

Let (G,c) be an instance of MaxWMP. Construct an instance (G′,c′) of MinWPMP with
G′ created from G by introduction of |V (G) |. Additional vertices with full degree:

c′(e) =



−c(e) e ∈ E(G)
0 e ∈ E(G′) \ E(G)

Let M ′ be a perfect matching in G′. Let M = M ′ ∩ E(G).

c′(M ′) = −c(M)

min
M ′ is perfect matching in G′

c′(M ′) = − max
M matching in G

c(M)

because every matching in G in a perfect matching in G′ can be completed.

Now we prove the other direction: MinWPMP is polynomially reducible to MaxWMP.
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Let (G,c) be an instance of MinWPMP. Construct (G′,c′) instance of MaxWMP with G′ =
G and c′(e) = K − c(e) where K = 1 +

∑
e∈E (G) |c(e) |.

Let M ′ be a matching with maximum weight in (G′,c′).

Observation. M ′ is matching with maximum cardinality in G′.

So every |M1 | > |M | and c′(M1) ≤ c′(M ′).

K |M1 | − c(M1) ≤ K �� M ′ �� − c(M ′)

⇒ K
(
|M1 | − �� M ′ ��

)
≤ c(M1) − c(M ′)

K = 1 +
∑

e∈E (G)

|c(e) | ≤ c(M1) − c(M ′)

This is a contradiction.

M ′ is the solution for the MinWPMP problem if it is a perfect matching, because c′(M) =
|K | · |M | − c(M). Otherwise no perfect matching exists (see Observation). �

17.2 The MinWPMP in bipartite graphs

This is an alternative description of the assignment problem.

Theorem 111. The assignment problem can be solved with O(nm + n2 log n) runtime.

Proof. Instance (G,c) with G = (A∪· B,E) and c : E(G) → R. Transform it to minimum-
cost flow problem.

A B

s
t

Figure 48: Structure of instance (G,c)

∀ a ∈ A : (s,a) ∈ E(G′)

∀ b ∈ B : (b, t) ∈ E(G′)

V (G′) = V (G) ∪· {s} ∪· {t}
u : E(G′) → R+
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u(e) ≡ 1

b : V (G′) → R

b(s) = n b(t) = −n

b(v) = 0 ∀ v ∈ A ∪· B

A B

s
t

1

1
1

1

1

1

1

1

1

Figure 49: (G,c) with flow fM

Weights are 0 for new edges. Weights are unmodified for the old ones.

We observe:

• For all perfect matchings M in G, there is a flow fM .

fM (e) =




1 e (with loss of direction) ∈ M
0 e (with loss of direction) ∈ E(G) \ M
1 e = (s,a) ∨ e = (b, t)

c( fM ) = c(M)

• Every valid integer flow F corresponds to one perfect matching Mf with c(Mf ) =
c( f ) (with s as source, the flow must be saturated ⇒ only valid flows are perfect
matchings).

For the solution of MinWPMP in (G,c) solve the minimum-cost flow problem in (G′,u,b,c′)
and determine an optimal integer solution with successive-shortest-path algorithm.

From both observations, we conclude the provided solution is an optimal solution for Min-
WPMP. The runtime is O(mn + B(m + n log n)) for successive-shortest-path where

B =
1
2

∑
v∈V (G′)

|b(v) | = n

This is in general similar to the hungarian method by Harold Kuhn (1955). �
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17.3 Definition of the assignment problem as (MI)LP

(MI)LP = mixed integer linear program.

A generic MILP looks as follows:
Minimize ct x subject to Ax ≤ b with x ≥ 0 and

xi ∈ Z+ i ∈ I ⊂ {1,2, . . . ,n}

A generic LP-relaxation looks as follows:
Minimize ct x subject to Ax ≤ b with x > 0.

Introduce some {xe}e∈E (G) ∈ {0, 1} |E (G) |

encoding some edge set
M := {e ∈ E(G) : xe = 1}

M shall be a perfect matching: ∑
e∈δ (v)

xe = 1︸︷︷︸
p.m.

∀ v ∈ V (G)

where the perfect matching has constraint c(M) =
∑

e∈E (G) ce xe . Equality is given, be-
cause ≤ would only show some matching.

min
∑

e∈E (G)

ce xe

∑
e∈δ (v)

xe = 1 ∀ v ∈ V (G)

xe ∈ {0, 1} ∀ e ∈ E(G)

LP-relaxation: min
∑

ce xe ∑
e∈δv

xe = 1 ∀ v ∈ V (G)

xe ≥ 0 ∀ e ∈ E(G)

Question: When is optimal solution of LP-relaxation also an optimal solution for MILP?

valid-solution (MILP) ⊆ valid-solution(LP-relaxation)

min(valid-solution (MILP)) ≥ min(valid-solution(LP-relaxation))

(=?) what about equality?

Sufficient A total unimodular⇒ LP-relaxation “equivalent” MILP.
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Figure 50: General linear programming - recognize the linear constraints

This lecture took place on 13th of January 2014.

Definition 112. A polyeder P(B) = {x ∈ Rn : Ax ≤ b, x ≥ 0} with A ∈ Rm×n ,b ∈ Rm is
called integral (dt. ,,ganzahlig”), if all its corners are integral.

Remark. You can optimize linearly over integral polyeders in polynomial time (“Interior
point method”).

Question. Which sufficient conditions are provided by integral polyeders?

Definition 113. A ∈ Rn×n is called unimodular if det(A) ∈ {±1}.

Observation.
A ∈ Zn×n

A is unimodular

}
⇒ A−1 ∈ Zn×n

where A−1 is unimodular. det(A−1) = 1
det(A) ∈ {±1}.

A−1 =
adjacency(A)

det(A)
=

((−1)i+ j det(Aj i ))t

det(A)

A ∈ Rm×n is called total unimodular (abbr. tum) if for every quadratic submatrix B ∈ Rk×k

(k ≤ min m,n) it holds that
det(B) ∈ {0,±1}

Considerations:

(1) (ai j ) = A total unimodular⇒ ai j ∈ {0,±1} ∀ i ∀ j

(2) A total unimodular⇒ At total unimodular

(3) A total unimodular⇒ −A total unimodular

(4) A total unimodular⇒ (A|A) total unimodular (where — denotes vertical concate-
nation)

(4, remark) Let B be a quadratic submatrix of (A|A). 2 cases:

• if B contains two identical columns⇒ det(B) = 0
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• if B contains no pair of identical columns⇒ B can be considered as submatrix
of A⇒ det(B) ∈ {0,±1}

(5) A total unimodular⇒ (A|E) is total unimodular where E ∈ Rm×m is an identity
matrix.

(5, remark) Let B be a quadratic total unimodular matrix of A|E:

• is submatrix of A⇒ det(B) ∈ {0,±1}
• With appropriate rows and Sn permutations π.

k1 + k2︸︷︷︸
|columns in E |

= k

See figure 51 with

1
1

10

0

A E

PE
π · B · Pπ - B ·

E1A2

A1 0

Figure 51: Matrix structure for consideration 5

Pπ = (B(π)
j ) =




1 π(i) = j ∀ i, j
0 else ∀ i, j

|det B | = ���det B̂ ���
det B̂ = det(A1) · det(E1) = det(A1)(

Pt = Pπ−1
)

because A is a permuted submatrix of A.

6 A is total unimodular⇒ (A| − A) is total unimodular (analogously to item 4)

Attention!
A tum
B tum

}
⇒ (A|B) tum

As exercise, find a counterexample with det(C) < {0,±1} but A and B are total unimodular.
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A        B

C = 0
0

0
1
11

C

Figure 52: Counterexample structure

Theorem 114. (Hoffman & Kruskal, 1956) Let A ∈ Zm×n . The following statements are
equivalent:

1. A is total unimodular.

2. Polyeder P(b) := {x ∈ Rn : Ax ≤ b, x ≥ 0} is integral ∀ b ∈ Zm

3. Every quadratic regular submatrix of A has an integral inverse

Proof. (Arthur Veinott, 1968) We use the proof structure 1⇒ 2⇒ 3⇒ 1

1⇒ 2 Assume A is total unimodular. Show that P(b) is integral for b ∈ Zmn hence every
base solution is integral. Let Xb be base solution with corresponding base AB m × m
submatrix of (A|E) with det(AB) , 0. Xb = A−1

B b and XN = 0. Because A−1
B ∈

Zm×m (as inverse of the unimodular matrix AB) and b ∈ Zm it holds that

XB ∈ Z
m ⇒ (XB ,XN ) ∈ Zn+m

2⇒ 3 Assume P(b) is integral for all b ∈ Zm . Show that for all quadratic submatrices B ∈
Zk×k of A, det(B) , 0⇒ B−1 ∈ Zk×k .

– B ∈ Zm×m ⇒ B is base of (A|E) ⇒ XB = A−1
B b, XN = 0 is base solution (=

corner) because P(b) is integral: so A−1
B b must be integral.

We show that A−1
B is integral hence every column of A−1

B is integral. Let bi be the
i-th column vector of A−1

B . Let t ∈ Zm such that bi+t ≥ 0. Let b(t) := AB ·t+e
with ei as identity vector.

XB = A−1
B b(t) = A−1

B (ABt + ei ) = t + A−1
B · ei = t + bi ≥ 0

XN = 0

}

⇒ (XB ,XN ) is valid base solution (corners) of P(b(t))

⇒ (XB ,XN ) is integral

⇒ t + bi = XB is integral

⇒ bi is integral

Because i is arbitrary, A−1
B is integral.
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B
1
1
10

0

k
k

Figure 53: Base matrix

B 0

1
0
0

B1
1
1

Figure 54: Matrix structure

– B ∈ Zk×k with (k < m) (Figure 53). Complete columns of B with basis AB

of (A|E) with column of E. With fitting permutation of rows and columns,
AB can be represented as (Figure 54) where B̂ is created by column and row
permutations of B. See Figure 55 is integral of bullet item 1. Figure 56 (equivalent

B 0

B1 E1

-1

Figure 55: Matrix structure, part 2

to Figure 55) is integral⇒ B̂−1 is integral.

B̂ = Pt
πBPπ ⇒ B̂−1 = (Pt

πBPπ )−1 = P−1
π B−1Pπ

B−1 = PπB−1ptπ is integral

3⇒ 1 Let B be a quadratic submatrix of A. If det(B) = 0, we are done. Else det(B) , 0 and
B−1 is integral, then det(B−1) ∈ Z. det(B−1) = 1

det(B) is integral⇒ det(B) ∈ {±1}.
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B-1 0

-B1·B
-1 E1

Figure 56: Matrix structure, part 3

�

Corollary. Let A ∈ Zm×n be total unimodular. Then it holds ∀ b ∈ Zm ∀ c ∈ Zn that

Figure 57: Linear programming problem

max
{
ct x : Ax ≤ b, x ≥ 0, x ∈ Z

}
= min

{
bt y : At y ≤ c, y ≥ 0, y ∈ Zm

}

This is equivalent (because of Theorem 114)

max
{
ct x : Ax ≤ b, x ≥ 0

}
= min

{
bt y : At y ≤ c, y ≥ 0

}

This is the duality of linear programming.

Theorem 115. (Heller & Tompkins, 1959) Let A ∈ {0,±1}m×n with at most two non-zero
eintries per column. A is total unimodular if there exists a partition (R,T ) of the rows in A
(R ∪· T = {1,2, . . . ,m}) such that

• if column j contains two ±1 entries, then the corresponding rows belong to different
parts of the partition.
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• if column j contains one+1 and one−1 entry, then the corresponding rows belong to
the same part of the partition.

Proof. Let B be a quadratic submatrix of A with B = (bi j ). Show that det(B) ∈ {0,±1}.

Induction over number of rows of B. B ∈ {0,±1}k×k .

Induction base k = 1 is fine.

Induction step Assume that the hypothesis holds for B ∈ {0,±1}(k−1)×(k−1) We want to
show that it holds for B ∈ {0,±1}k×k .

• If B contains zero-column, then det(B) = 0
• If column j has exactly one non-zero entry, the structure of Figure 58 occurs.

Compute det(B) with development along column j and apply induction as-

j

B 1

0

0

0

Figure 58: Matrix structure for induction step, case 2

sumption.
• Every column has two non-zero entries. Let j be an arbitrary column index.∑

i∈R

bi j =
∑
i∈T

bi j ∀ j

It follows that rows of B are linearly dependent. Hence det(B) = 0.

�

Remarks:

• Determination of total unimodular matrices is solvable in polynomial time withO((n+
m)4 min (m,n)) algorithm of Seymour.

• Conditions by Heller and Tompkins are also required for A ∈ {0,±1}m×n with at
most two non-zero entries per column.

17.3.1 Examples

• Vertex-edge incidence matrices of digraphs are total unimodular according to Theo-
rem 115. Let G be digraph (ave ) : A ∈ {0,±1} |V (G) |× |E (G) | .

ave =




0 v ∩ e = ∅
1 e = (v,?)
−1 e = (?,v)
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Partition is R = V (G) and T = ∅.

• Vertex-edge incidence matrices of complete bipartite graphs:

1

2

A B

e1
e2

em

Figure 59: Example edges and vertices

|A | = n B = m (|A | + |B |) × |E(G) |

(av,e ) = A = {0,+1}
av,e =




1 e ∩ v , {}
0 else

A

B

1 1 1
1 1 1

1 1 1
1

1

1

1
1

1

1
1

1

e1, e2,  …,  em em+1,   …,   e2m … e(n-1)m+1,   …,   enm

Figure 60: Example edges and vertices matrix

This lecture took place on 19th of January 2015.

Theorem 116. (Corollary by Hoffman and Kruskal) Let A be total unimodular with A ∈{0,±1}m×n .

112



1. Then it holds that

∀ c ∈ Zn , ∀ b ∈ Zm : Pp = {x ∈ Rn : Ax ≤ b, x ≥ 0}
Pd =

{
y ∈ Rm : At y ≥ c, y ≥ 0

}
Pp and Pd are integral.

2. Polyeder S =
{

x ∈ Rn : b ≤ Ax ≤ b,0 ≤ x ≤ d
}

is integral if b,b ∈ Zm and d ∈
Zn+.

Proof. Define restrictions:
Ax ≤ b

−Ax ≤ −b

Identity matrix n × n:
I x ≤ d

S =



x ∈ Rn : *.
,

A
−A
I

+/
-

x ≤ *.
,

b
−b
d

+/
-
, x ≥ 0




A total unimodular ⇒ A| − A t.um.
A total unimodular ⇒ A|I t.um.

}
also holds of transposed matrices

�

Definition 117. A matrix X = (xi j ) ∈ Rn×n is called double-stochastic if

•
∑n

j=1 xi j = 1 ∀ i ∈ {1, . . . ,n}
•

∑k
i=1 xi j = 1 ∀ j ∈ {1, . . . ,n}

• xi j ≥ 1 ∀ i, j ∈ {1, . . . ,n} × {1, . . . ,n}
Definition 118. The polyeder (polytop)

PA :=



(xi j ) ∈ Rn×n :
∑
i

xi j = 1,
∑
j

xi j = 1, xi j ≥ 0



is called alignment polyeder (dt. ,,Zuordnungspolyeder”, set of all double-stochastic matri-
ces). Matrix of restrictions of PA is total unimodular (Heller and Tompkins⇒ PA is inte-
gral).

⇔ corners of PA are integral

⇔ corners of PA are permutation matrices

∀ x ∈ PA : ∃ vector (αe )e∈corner(PA ) such that x =
∑

e∈corner(PA )

αe Ye︸︷︷︸
corner

. . .which is the convex comination of the corners.∑
e∈corner(PA )

αe = 1 αe ≥ 0 ∀ e ∈ corner(PA)
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1
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10

0

n

n

n²

Proof. We now what to prove corners of PA ⇔ PA are permutation matrices.

⇒ trivial

⇐ Let Xπ0 = (xπ0
i j ) the permutation matrix for the permutation π0. Hence,

xπ0
i j =

{
1 π0(i) = j
0 else ∀ i, j ∈ {1, . . . ,n}

Xπ0 is double-stochastic⇒ Xπ0 ∈ PA ⇒ Xπ0 is convex combination of the corners
of PA.

⇒ ∃απ ≥ 0 ∀ π ∈ Sn with
∑

απ = 1, Xπ0 =
∑
π∈Sn

απXπ

where π ∈ Sn is (by convention) the set of permutations over {1, . . . ,n}.
Goal. Show that απ0 = 1 (all others are in α = 0)⇒ π0 is a corner.

xπ0
i j =

∑
π∈Sn

απ xπi j

Let j , π0(i) then it holds that

0 =
∑
π∈Sn

απ xi j ⇒ απ xπi j = 0 ∀ π, ∀ i, j ⇒ απ = 0

If π(i) = j , then
xπi j = 1⇒ απ = 0

∀ i, j ∈ {1, . . . ,n} it holds that

π0(i) , j
π(i) = j

}
⇒ απ = 0

Followingly ∀ π , π0, it holds that απ = 0 because ∃i ∈ {1,2, . . . ,n} with π0(i) ,
π(i).
Let j = π(i). Then j , π0(i). Apply

π0(i) , j
π(i) = j

}
⇒ απ = 0

with these i and j .⇒ απ0 = 1. π0 muss be contained in sum⇒ π0 must be corner.
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Theorem 119. (Theorem by Birckhoff) The permutation matrices correspond to the corners
of an assignment polytop and every double-stochastic matrix can be represented as convex
combination of permutation matrices.

matching number, vertex cover number, edge cover number, edge incidence number, stabil-
ity number

matching number
ϑ(G) := max

{
|M | : M matching in G

}
vertex/node cover number

γ(G) := min {|Y | : Y ⊆ E(G),Y is vertex cover in G}
edge cover number

ζ (G) := min{|Y | : Y ⊆ V (G),Y is vertex cover in G,
∀ e ∈ E(G) ∃v ∈ Y : e ∩ V , ∅}

stability number
α(G) := max {|S | : S is stable in G}

Definition 120. S ⊆ V (G) is called a stable set or independent set if ∀u,v ∈ S : (u,v) ,
E(G).

Let A be total unimodular with A ∈ Rm×n . Consider

P1 := max
{

1t x : Ax ≤ 1, x ∈ Zn+
}
= min

{
1t y : At y ≥ 1, y ∈ Zm+

}
=: D1

P2 := min
{

1t x : Ax ≥ 1, x ∈ Zn+
}
= max

{
1t y : At y ≤ 1, y ∈ Zm+

}
=: D2

. . .where 1t represents a vector (1, 1, . . .).

Let G be a bipartite graph and A be a vertex incidence matrix of G.

A ∈ {0, 1} |V (G) |× |E (G) |

max



∑
e∈E (G)

xe :
∑

e∈E (G)

ave xe ≤ 1, xe ∈ Z+︸   ︷︷   ︸
xe ∈{0,1}

∀ e ∈ E(G)︸        ︷︷        ︸
∀ v∈V (G)




= min



∑
v∈V (G)

yv :
∑

v∈V (G)

ave yv ≥ 1, yv ∈ Z+︸   ︷︷   ︸
yv ∈{0,1}

, ∀ v ∈ V (G)︸        ︷︷        ︸
∀ e∈E (G)




xe and yv will be 1 or 0, because we are minimizing.

Construct ∀ xe matching M with e ∈ M ⇔ xe = 1. P1 corresponds to max-cardinality
matching problem.

Observation. The optimal solutions y∗ of D1 satisfy y∗v ∈ {0, 1} ∀ v ∈ V (G).
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For D1, ∀ e ∈ E(G) with e = (v1,v2) :∑
v∈V (G)

ave yv ≥ 1⇔ av1e yv1 + av2e yv2 = yv1 + yv2 ≥ 1

So every valid solution of D1 = {. . . yv ∈ {0, 1} ∀ v ∈ V (G) . . .} corresponds to an edge
cover.

Optimal value of P1 = ϑ(G) is the optimal value of D1(D1) = ζ (G).

P2 := min
{

1t x : Ax ≥ 1, x ∈ {0, 1}n} = min
{

1t x : Ax ≥ 1, x ∈ Zn+
}

as in D1 = D1 where n = |E(G) |.

∀ v ∈ V (G) :
∑

∀ e∈E (G)

ave xe ≥ 1

∀ v ∈ V (G) :
∑

e∈δ (v)

ave xe ≥ 1

so at last 1 edge per vertex is incident with v.

Valid solutions of P2 are vertex covers.

Target function value corresponds to the cardinality of the vertex cover.

Optimal target function value of P2 = δ(G) = cardinality of small vertex cover.

D2 : max



1t y : At y ≤ 1, y ∈ Zn+︸︷︷︸
∈{0,1}n




where n = |V (G) |
∀ e=(v1,v2)e ∈ E(G)

∑
v∈V (G)

ave yv ≤ 1

≤ av1e yv1 + av2e yv2 = yv1 + yv2 ≤ 1

Every valid solution of D2 (D2) corresponds to one stable set and the target function value
corresponds to its cardinality.

opt(D2) = α(G) = ζ (G) = opt(P2)

18 Matroids

A family of sets (E,F) consists of a finite ground set E and a familyF of subsets of E. (E,F)
is called independence system (IDS, dt. UAS) if

M1 ∅ ∈ F

M2 Let Y ∈ F. Then it must hold that, ∀X ⊆ Y : X ∈ F
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The elements of F are called independent. Let A ⊆ E. If A < F, then A is called dependent.
Inclusion minimal dependent sets are called cycles. Inclusion maximal independent sets are

called bases. ∀ X ⊆ E we define a rank of X :

rank(X ) := max {|Y | : Y ⊆ X,Y ∈ F}
⇒ only independent subsets of X .

∀ X ⊆ E define a closure of X , σ(X ) with

σ(X ) := {y ∈ E : rank(X ∪ {y}) = rank(X )}
Example. Let G = (V,E) be a graph. E = V (G).

F := {F ⊂ V (G) : F is stable}
This lecture took place on 20th of January 2015.

18.1 Maximization problem for IDS

Given. IDS (E, F) and c : E → R

Find. Determine F∗ ∈ F with F∗ = argmaxF ∈F(c(F))

F is specified by a (polynomial) IDS-oracle, which is an algorithm solving the question “Is a
given F ⊆ E independent?”.

18.2 Minimization problem for IDS

Given. IDS (E, F) and c : E → R

Find. Determine base B∗ of IDS with c(B∗) = minbase B∈(E,F) c(B)

This problem is NP-hard.

The (polynomial) base-superset-oracle is used to solve the question “For F ⊆ E, is there
some B ⊆ F the base in (E,F)?”.

19 Examples

19.1 Max-Weight Stable Set Problem

Given. G = (V,E) graph

Find. Determine a stable set S ⊆ V (G) with maximum |S |

This problem is NP-hard.

E = V (G) F = {F ⊆ E = V (G) : F is stable} c ≡ 1

117



19.2 Travelling Salesman Problem

Given. G = (V,E) graph, c : E(G) → R+

Find. Hamiltonian cycle with minimum weight

E = E(G) F =
{
F ⊆ E(G) : F is subset of hamiltonian cycle

}
c as above.

Hamiltonian cycles are bases of (E,F). NP-hard problem.

19.3 Shortest-Path Problem

Given. Digraph G = (V,E),c : E(G) → R ,{s, t} ∈ V (G)2

Find. Determine a shortest s-t-path

E = E(G) F :=
{
F ⊆ E : F is subset of s-t-path

}

Can be solved in polynomial time.

19.4 Knapsack Problem

Given. n ∈ N,ci ,wi ≥ 0,∀i ∈ {1,2, . . . ,n} ,W ≥ 0

Find. Determine T ⊂ {1,2, . . . ,n} with
∑

i∈T wi ≤ W ,
∑

i∈T ci → max

Type. NP-hard problem.

E = {1,2, . . . ,n} F :=



F ⊆ E :
∑
i∈F

wi ≤ W



c as above.

19.5 Minimum Spanning Tree Problem

Given. G = (V,E) is valid graph c : E(G) → R, graph is connected

Find. Spanning tree T with minimum weight

Type. Minimization problem. Polynomial time solvable.

E = E(G) F := {F ⊂ E(G) : F is forest}
The bases of (E,F) ≡ spanning trees.

19.6 Maximum Weighted Forest Problem

Given. G = (V,E), c : E(G) → R
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Find. Forest F in G with maximum weight c(F) =
∑

e∈E (F ) c(e)

Type. Maximization problem. Polynomial time solution.

c as above.

E = E(G) F :=
{
F ⊆ E : F is edge set of a forest

}

19.7 Maximum Weight Matching Problem

Given. G = (V,E), c : E(G) → R

Find. Matching M with maximum weight c(M) =
∑

e∈M c(e)

E = E(G) F :=
{
F ⊆ E : F is matching

}
c as above.

Definition 121. An IDS is a matroid if

M3 ∀X,Y ∈ F : |X | > |Y | ⇒ ∃x ∈ X \ Y such that Y ∪ {x} ∈ F
Theorem 122. The following IDS are matroids

1. E is set of column vectors of a matrix A over an arbitrary field K .

F :=
{
F ⊆ E : vectors of F are linearly independent in K

}
“vector matroid”

Y = {col1,col2, . . . colk} ∀ ∈ F
X =




col1,col2, . . . ,coll︸               ︷︷               ︸
linear indep.



∈ F l > k

Consider X ∪Y : rank(X ∪Y ) ≥ l and rank(Y ) = k < rank(X ∪Y ). Then it follows
that

∃vector v ∈ X ∪ Y with Y ∪ {u} linearly independent v ∈ X \ Y

2. IDS of exercise 6. “Graphical matroids”. X,Y forests in G : |X | > |Y | with (M3)
condition. Show that ∃x ∈ X : Y ∪ {x} is forest.
Assumption: ∀ x ∈ X : Y ∪ {x} is not a forest⇔ x is in a connected component of
Y ∀ x ∈ X .
⇒ every connected component of forest X is a subset of a connected component of
forest Y .
For any G = (V,E) if G is cycle-free it holds that

���connected components��� = |V (G) | − |E(G) |

p := ���connected components of X ���
q := ���connected components of Y ���
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p ≥ q

p = |V (G) | − |X | ≥ |V (G) | − |Y |

As far as |X | ≤ |Y |, this is a contradiction.

Tree number of connected components = n − (n − 1).

Forest number of connected components = |V (G) | − |E(G) | if G is cycle-free.

3. “Uniform matroid”.

E = {e1, . . . ,en} F := {F ⊆ E : |F | ≤ k}
with k ∈ N. (M3) is trivial to show.

4. G = (V,E) is graph. S ⊆ V (G) stable. ∀s ∈ S : ks ∈ N.

E = E(G) F := {F ⊆ E(G) : δF (s) ≤ ks ∀ s ∈ S}
F = {(1,2), (1,3), (4,5), (4,2)}
F = {(1,2), (1,3), (4,5), (4,3)}

1

2 3

5

4

S = {2, 3, 5}

Figure 61: Example for Theorem 122 bullet point 4. k2 = 1, k3 = 2, k5 = 1

See figure 61.
(M3) X,Y ∈ F : |X | > |Y |.

S′ = {s ∈ S : δY (s) = ks}
|X | > |Y | and δX (s) ≤ ks ∀ s ∈ S

to show
=====⇒ ∃e ∈ S \ Y e < δ(s) ∀ s ∈ S′
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2

3

S'S|S'

2

3

S'S|S'

If such an edge exists, we can append it.

⇒ Y ∪ {e} ∈ F
Assumption:

to show
=====⇒ does not hold: ∀ e ∈ X \ Y : ∃s ∈ S′ : e ∈ δ(s)

⇒ |X | =
∑
s∈S′

δX (s) ≤
∑
s∈S′

ks =
∑
s∈S′

δy(s) = |Y |

|X | ≤ |Y |

Contradiction to the assumption.

5. Let G = (V,E) be a digraph. S ⊆ V (E). ks ∈ N ∀ s ∈ S. E = E(G).

F :=
{
F ⊆ E : δ−k (s) ≤ ks

}

(M3) analogous as in the previous item #4, but replace δ with δ−. Stability is relevant
for the rational in item #4, but because a direction is given here, it is not required.

Theorem 123. Let (E,F) be a IDS. Then the following statements are equivalent:

M3: Let X,Y ∈ F, |X | > |Y | ⇒ ∃x ∈ X \ Y Y ∪ {x} ∈ F
M3’: Let X,Y ∈ F, |X | = |Y | + 1⇒ ∃x ∈ X \ Y Y ∪ {x} ∈ F
M3”: For every X ⊆ E the bases of X have the same cardinality.
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Proof. We show M3⇔ M3’, M3⇒ M3” and M3’⇒ M3.

M3⇔ M3’ trivial.

M3⇒ M3” Let B1,B2 be bases of X ⇒

– B1,B2 ∈ F
– B1,B2 ⊆ X

– B1 and B2 are inclusion maximal independent

Assumption. |B1 | > |B2 |. From M3, it follows that ∃b ∈ B1 \ B2 : B2 ∪ {b} ∈ F. So
it follows that B2 is not a tree (contradiction).

M3’⇒ M3 Let X,Y ∈ F : |X | > |Y |. Show that ∃x ∈ X \ Y : Y ∪ {x} ∈ F.

Consider X ∪Y . Is Y a base of X ∪Y ? No. Assume that Y is base of X ∪Y
(M3′′)
====⇒ all

bases of X ∪ Y have cardinality = |Y |.
Consider X ⊆ X ∪ Y,X ∈ F. X is not inclusion maximal because otherwise it would
be a base and hence |X | = |Y | which is a contradiction.

⇒ ∃X % X with X ∈ F,X ⊆ X ∪ Y

X is analogously not a base. Can (again) be extended until a contradiction occurs,
because E is finite.
Y is not a base

⇒ Y is not inclusion maximal independent in X ∪ Y

⇒ Y is independent extensible in X ∪ Y

⇒ ∃e ∈ (X ∪ Y ) \ Y = X \ Y Y ∪ {e} ∈ F.

Let X = e.

�

Definition 124. Let (E,F) be a IDS. ∀ X ⊆ E the lower rank is defined as ρ(X ) where

ρ(X ) := min {|Y | : Y ⊆ X,Y ∈ F,Y ∪ {x} < F ∀ x ∈ X \ Y}
:= min {|B | : B is base of X}

The rank of X (rank(X )) is defined as max {|Y | : Y ⊆ X,Y ∈ F}.

The lower rank function f : 2E → Z+ with f : x 7→ ρ(x).

The rank quotient of (E,F) is defined as q(E,F) = minX ⊆E
ρ(x)
r (x) .

Example.
G = (V,E),E = E(G),F =

{
M ⊆ E : M matching

}
ρ(E) = ���smallest inclusion maximal matching���

r (E) = ���largest matching���
ρ(E) ≤ r (E)
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r(E) = 3          ρ(E) ≤ 2
= 2

Figure 62: Rank example

This lecture took place on 26th of January 2015.

Theorem 125. Let (E,F) be an IDS. Then it holds that q(E,F) ≤ 1. Furthermore iff
q(E,F) = 1 then (E,F) is a matroid.

Proof.

q(E,F) = min
A⊆E

ρ(A)
r (A)

≤ 1

because ρ(A) ≤ r (A) ∀ A ⊆ E.

q(E,F) = 1⇔
ρ(A)
r (A)

= 1 ∀ A ⊆ E

⇔ ρ(A) = r (A) ∀ A ⊆ E ⇔ M3′′

all bases of X have the same cardinality. �

Theorem 126. (Hausmann, Jenkyns, Korte, 1980) Let (E,F) be an IDS. If ∀ A ∈ F ∀ e ∈
E, A ∪ {e} contains at most ρ cycles, then it holds that

q(E,F) ≥
1
ρ

A proof for Theorem 126 is not provided.

19.8 Additional matroid axioms

Theorem 127. (bases) Let E be a finite set and B ⊆ 2E . Family B is the set of bases of a
matroid if and only if the following base axioms are satisfied

(B1) B , ∅

(B2) ∀ B1,B2 ∈ B and x ∈ B1 \ B2 : ∃y ∈ B2 \ B1 with (B1 \ {x}) ∪ {y} ∈ B.

If (B1) satisfies (B2), then (E,F) is the matroid with base set B where

F = {F ⊆ E : ∃B ∈ B with F ⊆ B}
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Example. Let G = (V,E) and is connected. Then the bases are its spanning trees. The
graphical matroid M (G) is given.

(B1)

(B2) Let T1 and T2 be spanning trees. x ∈ T1 \T2. {v}∪ (T1 \ {x}) is a spanning tree again.

T1

y ∈ T2 \ T1x

Figure 63: Example. y connects both connected components

Theorem 128. Let E be a finite set and r : 2E → Z+. Then the following 3 statements are
equivalent:

• r is the rank function of a matroid (E,F) (with F = {F ⊆ E : r (F) = |F |}).

• ∀ X,Y ⊆ E it holds that

(R1) r (X ) ≤ |X |

(R2) X ⊆ Y ⇒ r (X ) ≤ r (Y )

(R3) r (X ∪ Y ) + r (X ∩ Y ) ≤ r (X ) + r (Y ) (submodular)

• ∀ X ⊆ E and x, y ∈ E it holds that

(R1’) r (∅) = 0
(R2’) r (X ) ≤ r (X ∪ {y}) ≤ r (X ) + 1
(R3’) r (X ∪ {x}) = r (X ∪ {y}) = r (X ) ⇒ r (X ∪ {x, y}) = r (X )

Example. M (G). G is connected.

(R1) X ⊆ E(G). r (X ) =
∑q

i=1(ni − 1) where q is the number of connected components
of (V (G), X ) and ni is the number of vertices in the i-th connected component of
(V (G),X ).

|X | ≥ r (X ) where |X | =
q∑
i=1

hi

(R2) X ⊆ Y ⇒ r (X ) ≤ r (Y ).

F ⊆ Xi is cycle-free in (V (G),X ) implies F is cycle-free in (V (G),Y ).
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x

x

r(X) = 10

r(X ∪ {x}) = 10

Figure 64: Example for (R2’)

(R3’)

x

yX

Figure 65: Example for (R3’)

(R1’) done

(R2’) r (X + {x}) ≤ r (X ) + 1

Theorem 129. (Closure) Let E be a finite set with r : 2E → 2E . σ is the closure function of
a matroid if ∀ X,Y ⊆ E and ∀ x, y ∈ E it holds that

(S1) X ⊆ σ(X )

(S2) X ⊆ Y ⇒ σ(X ) ⊆ σ(Y )

(S3) σ(σ(x)) = σ(x)

(S4) [y < σ(X ) ∧ y ∈ σ(X ∪ {x})]⇒ x ∈ σ(X ∪ {y})

Example. M (G) with connected G. G = K13

σ(X ) =
q∨
i=1

E(Ci )

where q is the number of connected components of (V (G),X ) and c1 to cq are the connected
components of (V (G),X ).

Theorem 130. (Cycles) Let E be a finite set and C ⊆ 2E . C is the set of cycles of an IDS
(E,F) withF :=

{
F ⊆ E : @C ∈ C with C ⊆ F

}
if and only if the following conditions are

satisfied:
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x

r(X) = 10

y

Figure 66: Example for S* statements

(C1) ∅ < C

(C2) ∀C1,C2 ∈ C : C1 ⊆ C2 ⇒ C1 = C2

Furthermore for the set C of cycles of an IDS it holds that:

a) (E,F) is a matroid

b) ∀ X ∈ F ∀ e ∈ E : X ∪ {e} contains at most one cycle. Denote this number of
cycles as C(X,e). If no cycle exists, let C(X,e) = ∅.

where a ⇔ b.

Furthermore this statement is equivalent b)

(C3) ∀C1,C2 ∈ C with C1 , C2 ∀ e ∈ C1 ∩ C2,∃C3 ∈ C with C3 ⊆ (C1 ∪ C2) \ {e}
(C4) ∀C1,C2 ∈ C , ∀ e ∈ C1 ∩ C2, ∀ f ∈ C1 \ C2 exists C3 ∈ C with f ∈ C3 ⊆

(C1 ∪ C2) \ {e}.

Example. M (G) and G is connected. Cycles in M (G) are cycles in a graph-theoretical sense

(C1) trivial

(C2) Cycle does not have proper subset which is cycle again.

b) X is cycle-free because X ∈ F. One additional edge gives at most one cycle.

19.9 Duality of matroids

Let (E,F) be an IDS. The dual of (E,F) is the family of sets (E,F∗) with

F∗ := {F ⊆ E : ∃ base of (E,F) such that F ∩ B = ∅}
Question. Is (E,F∗) an IDS? Yes.
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Figure 67: Example for (C3)

(C4)

C1

C2

e

f

Figure 68: Example for (C4)

(M1) ∅ ∈ F∗ ∀ base B of (E,F) it holds that ∅ ∩ B = ∅

(M2) Y ∈ F∗ : X ⊆ Y
!
⇒ X ⊆ F∗

From Y it follows that ∃ a base B of (E,F) : Y ∩ B = ∅ ⇒ X ∩ B = ∅ ⇒ X ∈ F∗

Hence a dual of an IDS is an IDS.

Theorem 131. It holds that (E,F∗∗) = (E,F)

Proof. F ∈ F∗∗
def
⇔ ∃ base B∗ in (E,F∗) with F ∩ B∗ = ∅. ⇔ ∃ base B in (E,F) with

B∗ = BC and F ∩ BC = ∅ hence F ⊆ B⇔ F ∈ F

Claim. B∗ base of (E,F∗)⇔∃ base B of (E,F) : B∗ = BC

Proof. B∗ base of (E,F∗) ⇒ B∗ ∈ F∗
def
⇒ ∃ base B of (E,F)

⇒ B∗ ⊆ BC . Assume that ∃x ∈ BC \ B∗. Then B∗ ∪ {x} ⊆ BC

⇒ (B∗∪{x})∩B = ∅
def
⇒ B∗∩{x} ∈ F∗. This contradicts with B∗ is a base of (E,F∗).

Hence B∗ = BC . �

Theorem 132. B∗ base of (E,F∗) ⇔ ∃ base B of (E,F) with B∗ = BC and (E,F∗) its dual.
Let r and r∗ be the corresponding rank functions. Then it holds that
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a) (E,F) is a matroid⇔ (E,F∗) is matroid

b) If (E,F) is a matroid, then it holds that r∗(F) = |F | + r (E \ F) − r (E) ∀F ⊆ E

Example. (M (G))∗ = M (G∗) ∀G planar. A dual graph contains one vertex per area and
1 infinite area. An edge between 2 new vertices is created, if they are neighbors (share one
edge). (M (G))∗ = M (G∗) ∀G planar.

G = (V, E)  planar

G*

Figure 69: Duality for Theorem 132

This lecture took place on 27th of January 2015.

Theorem 133. Let G be a connected planar graph with an arbitrary planar embedding. Let
G∗ be the planar duality of G. Let M (G) be the graphical matroid of G. It holds that

M∗(G) = (M (G))∗ = M (G∗)

Furthermore G is planar if and only if (M (G))∗ is graphical; hence if a graph G′with M (G′) =
(M (G))∗ exists.

If G is planar, then G′ is isomorphic to a planar embedding of G∗.

19.10 The greedy algorithm

Let (E,F) be a IDS and c : E → R+ (without loss of generality). A maximization problem
is given by max {c(F) :=

∑
c∈F c(e) : F ∈ F

}
.

Definition 134. 2 oracles O1 and O2 are called equivalent if O1(O2) can be simulated by a
polynomial algorithm using an Oracel O2(O1) (in both directions!).

Let O1 be an independent oracle. Let O2 be a base superset oracle. For general IDS O1 and
O2 are not equivalent.

19.11 IDS for TSP on Kn (complete graph)

E are edges and F is the subset of Hamiltonian cycles.
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Algorithm 17 BEST-IN greedy algorithm
Given. IDS (E,F), independent oracle, c : E → R+
Find. An independent set F ∈ F

1: Sort edges E = {e1,e2, . . . ,en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en )
2: F := ∅
3: for i from 1 to n do
4: if F ∪ {ei} ∈ F then
5: F := F ∪ {ei}
6: end if
7: end for

Algorithm 18 WORST-OUT greedy algorithm
Given. An IDS (E,F) is given by base supersets oracle (does given set contain a base?)
Find. B base of (E,F)

1: Sort edges E = {e1,e2, . . . ,en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en )
2: F := E
3: for i from 1 to n do
4: if F | {ei} contains base then
5: F := F | {ei}
6: end if
7: end for

O1 is polynomial? F ∈ F (TM Hamiltonian cycle)⇔ degF (v) ≤ 2 and no subcycles can be
computed in polynomial time

O2 is polynomial? (Base OM oracle) F ≤ E(Kn ). ∃ base B of (E,F) with B ⊆ F? Bases
are Hamiltonian cycle. Hence not polynomial. Contradiction. Is actually NP-hard.

One direction O1 is simple. O2 difficult. . .other way also possible?

IDS for shortest s-t-path system (F are edges in s-t-path (parts of the path; base is complete
path)). O2 is polynomial? F ⊆ E(G) is there a base B with B ⊆ F? Hence “Does some
s-t-path exist in (V (G),F)?”. Polynomial behavior follows.

O1 is polynomial? F ⊆ F: Is F independent⇔ “F is subset of a s-t-path in G?” This is
NP-complete problem and hence likely not polynomial (Korte and Monna, 1979)

O1 and O2 are for general IDS in complexity independent of each other.

Remark. If (E,F) is a matroid, then O1 (rank oracle) and O2 (closure oracle) equivalent
under each other. But don’t have an equivalent base oracle (oracle for determination of an
dependent TM with minimum cardinality)

Theorem 135. (Jenkyns, Korte, Hausmann, 1978) Let (E,F) be an IDS and c : E → R+.
Denote G(E,F,c) as the costs of a solution determined by the BEST-IN-GREEDY algo-
rithm. Denote OPT(E,F,c) as the costs of an optimal solution (both for the maximization
problem the GREEDY-IN algorithm is tackling).

Then it holds that

q(E,F) ≤
G(E,F,c)

OPT(E,F,c)
≤︸︷︷︸

trivial

1 ∀ c : E → R+
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Furthermore the best lower bound is ∃c : E → R+ with q(E,F) = G(E,F,c)
OPT(E,F,c) .

Proof. E = {e1,e2, . . . ,en} with c(e1) ≥ c(e2) ≥ . . . ≥ c(en ). Let Gn be the solution de-
termined by BEST-IN-GREEDY and On be an optimal solution. Let E j =

{
e1,e2, . . . ,e j

}
,

G j = Gn ∩ E j , O j = On ∩ E j ∀ j = 0, 1, . . . ,n. Let d j = c(e j ) − c(e j+1) ≥ 0 ∀ j =
1, . . . ,n − 1 and dn = c(en ).

• ∀ j : O j ∈ F⇒ ���O j
��� ≤ r (E j )

• G j is base of E j . Hence G j is inclusive maximal independent submatrix of E j , oth-
erwise ∃G j % G j with G j ⊆ E j (where E j =

{
e1, . . . ,e j

}
) and G j ∈ F. This

contradicts with the way BEST-IN-GREEDY works.

�

���G j
��� ≥ ρ(E j )

q(E,F) = min
X ⊆E

ρ(X )
r (X )

≤
ρ(x)
r (x)

ρ(X ) ≥ q(E,F)r (X ) ∀ X ⊆ E

G(E,F,c) = c(Gn ) =
n∑
j=1

(���G j
��� −

���G j−1
���
)︸             ︷︷             ︸

1 or 0 depending on e j

c(e j ) =
∑

e j ∈Gn

c(e j )

= (|G1 | − |G0 |︸︷︷︸
=0

)c(e1) + ( |G2 | − |G1 |)c(e2) + . . . + (|Gn | − |Gn−1 |)c(en )

= |G1 | (c(e1) − c(e2))︸            ︷︷            ︸
d1

+ |G2 |
(
c(e2) + c(e3)

)︸             ︷︷             ︸
d2

+ . . . + |Gn | c(en )︸︷︷︸
dn

=

n∑
j=1

���G j
��� d j ≥

n∑
j=1

ρ(E j )d j ≥ q(E,F)
n∑
j=1

r (E j )d j

≥ |O1 | (c(1) − c(2)) + . . . + |On | c(en ) = |O1 | c(e1) + (|O2 | − |O1 |)c(e2) + . . . + (|On | − |On−1 |)c(en )

≥ q(E,F)
n∑
j=1

(���O j
��� −

���O j−1
���
)

c(e j ) = q(E,F)c(On )

⇒
G(E,F,c)

OPT(E,F,c)
=

c(Gn )
c(On )

≥ q(E,F)

���O j
��� −

���O j+1
��� is again either 0 or 1 depending on existence of j in O j+1 . . .On .

Furthermore we also show now that the bound q(E,F) is optimal: Let F ⊆ E with q(E,F) =
ρ(F )
r (F ) = minX ⊆E

ρ(X )
r (X ) . Let B1 and B2 bases of F such that |B2 | = r (F) where r is the cardi-

nality of the greatest independent submatrix and |B1 | = ρ(F). Let c : E → R+ with

c(e) =



1 e ∈ F
0 else
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BEST-IN-GREEDY: Sort E = {e1, . . . ,en} with c(e1) ≥ c(e2) ≥ . . . ≥ c(en ) where
B1 =

{
e1, . . . ,e |B1 |

}
. This returns B1 (because e1, . . . ,e |B1 | must be connected first and B1 is

base and therefore has maximum cardinality). Then G(E,F,c) = |B1 | = ρ(F).

OPT(E,F,c) = |B2 | = r (F)

r (F) is the cardinality of a maximum independent set. The weights are 1. r (F) is optimal.

q(E,F) =
ρ(F)
r (F)

=
G(E,F,c)

OPT(E,F,c)
⇒ the smallest q(E,F) is always achieved by at least one c.

Theorem 136. (Edmonds, Rado, 1971) An IDS (E,F) is a matroix if and only if the BEST-
IN-GREEDY algorithm provides an optimal solution for the maximization problem ∀ c :
E → R+.

Proof. From Theorem 135 it follows that

q(E,F) ≤
G(E,F,c)

OPT(E,F,c)
≤ 1 ∀ c : E → R+

From Theorem 125 it follows that (E,F) is matroid ⇔ q(E,F) = 1. Because the lower
bound is always reached, it follows

(E,F) is matroid ⇔
G(E,F,c)

OPT(E,F,c)
= 1 ∀ c : E → R+

�

Remark. For matroids, minimization and maximization problems are equivalent. Hence the
maximization problem handled by the GREEDY-IN algorithm is equivalent to min {c(B) =

∑
e∈B c(e) : B is base of (E,F)

}
where c(e) = M − c(e) with M = maxe∈E |c(e) | + 1.

Theorem 137. (Edmonds 1971, polyedric representation) Let (E,F) be a matroid and r :
E → Z+ be a rank function. Then the matroid polytop P(E,F) (convex hull of incidence
vectors of all independent sets) is given by:

P(E,F) =



x ∈ R |E | : x ≥ 0,
∑
e∈A

xe ≤ r (A) ∀ A ⊆ E



F ∈ F xF (e)︸︷︷︸
incidence vectors

=



1 e ∈ F
0 else

∑
e∈A

xF
e = |A ∩ F | ≤ r (A)

We conclude: xF ∈ P(E,F) ∀F ∈ F.

Example. P(M (G)) is the graphical matroid of the graph connected components.

P(M (G)) =




x ∈ R{E (G)} : x ≥ 0,
∑
e∈A

xe ≤ n − 1︸            ︷︷            ︸
independent of components of M (G) are forests

∀ A $ E(G),
∑
e∈A

xe = n − 1, A = E(G)



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active vertex (Push-relabel algorithm), 44
alignment polyeder, 113
almost perfect matching, 91
alternating forest, 96
Alternating path (matchings), 85
alternating tree, 96
arborescence, 12
Augmenting path (matchings), 85

b-flow, 60
barrier, 93
Bottleneck edge, 40
branching, 12

contraction, 17

deficiency, 101
demanding vertex, 60
double-stochastic matrix, 113

edge cover number, 115
even vertices, 96

factor-critical graphs, 91

graphical matroid, 119
ground set, 116

independence system, 116
independent set, 115
integral polyeder, 106

MA-order, 57
Matched vertex, 84
Matching, 84
Matching number, 84
matching number, 115
matroid, 116

bases, 117
cycles, 117
lower rank, 122
rank, 122
rank quotient, 122

Maximal matching, 84
Minimum vertex cover, 84

odd vertices, 96
offering vertex, 60

Perfect matching, 84
Polyeder, 106
polynomial runtime, 7
polynomially computable function, 8
preflow, 44

residual network, 32

stability number, 115
stable set, 115
strongly polynomial, 8

Theorem by Tutte, 93
total unimodular matrix, 106
Tutte theorem, 93

Uniform matroid, 120
unimodular matrix, 106

Vertex, 84
Vertex cover number, 84
vertex cover number, 115

weakly polynomial, 8
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