pijul — post-git SCM

https:/ /lukas-prokop.at/talks/glt25-pijul

meisterluk
2025-04-26
Lightning Talk, GLT25

https://lukas-prokop.at/talks/glt25-pijul

the epoch of git

(darcs) (Fossil)
2003 2004 2005 2006

0}

mER

(mercurial, bazaar, git)

the epoch of git

(darcs) (Fossil)
2003 2004 2005 2006

0}

mER

(mercurial, bazaar, git)

the epoch of git

(darcs) (Fossil)
2003 2004 2005 2006 2016

‘}

BEE

(mercurial, bazaar, git)

Pijul

4 —_—

\1 \/

git applied

$ git init
Initialized empty Git repository in /tmp/gitex/.git/

$ echo "In which branch am I? main" > text.txt
$ git add text.txt

$ git commit -m 'initial commit'

[main (root-commit) 51337ac] initial commit
1 file changed, 1 insertion(+)

create mode 100644 text.txt

$ git branch feature
$ echo "In which branch am I? feature" > text.txt

$ git commit -m 'feature branch'
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: text.txt

no changes added to commit (use "git add" and/or "git commit -a")

git applie

$ git commit -a -m 'feature branch’
[main 2ce74b7] feature branch
1 file changed, 1 insertion(+), 1 deletion(-)

$ git branch collab
$ echo "In which branch am I? collab" > text.txt

$ git commit -a -m 'collab branch'
[main ed81b85] collab branch
1 file changed, 1 insertion(+), 1 deletion(-)

$ git switch feature
Switched to branch 'feature'

$ echo "In which branch am I? feature. I swear!" > text.txt

$ git commit -a -m 'feature branch for sure'
[feature b256b5b] feature branch for sure
1 file changed, 1 insertion(+), 1 deletion(-)

$ git merge collab

Auto-merging text.txt

CONFLICT (content): Merge conflict in text.txt

Automatic merge failed; fix conflicts and then commit the result.

$ echo "In which branch am I? some-merged-branch" > text.txt

git applied

$ git commit -a -m 'feature and collab merged'’
[feature 3a6d2ea] feature and collab merged

$ git switch main
Switched to branch 'main'

$ git merge feature

Auto-merging text.txt

CONFLICT (content): Merge conflict in text.txt

Automatic merge failed; fix conflicts and then commit the result.

$ git log --graph --oneline --all
* 3a6d2ea (feature) feature and collab merged

*

b256b5b feature branch for sure
* ed81b85 (HEAD -> main) collab branch

* 2ce74b7 (collab) feature branch

* 51337ac initial commit

git visualized

Q—}? J

main

feature

collab

git visualized

main g:
feature Qﬁ

collab

L
® glt --everything-is-local

About

Documentation
Reference
Book
Videos

External Links

Downloads

Community

This book is available in English.

Full translation available in

azarbaycan dili,
GBATAPCKH B3HK,
Deutsch,
Espatiol,
Frangais,
EAAnpvina,
B&EE,
g0,
Nederlands,
PycckuH,
Sloven&cina,

Tagalog,

Q, Type/ to search entire site... 0

Chapters * Znd Edition

7.9 Git Tools - Rerere

Rerere

The git rexere functionality is a bit of a hidden feature. The name stands for “reuse recorded
resolution” and, as the name implies, it allows you to ask Git to remember how you've resolved a
hunk conflict so that the next time it sees the same conflict, Git can resolve it for you automatically.

There are a number of scenarios in which this functionality might be really handy. One of the
examples that is mentioned in the documentation is when you want to make sure a long-lived topic
branch will ultimately merge cleanly, but you don't want to have a bunch of intermediate merge
commits cluttering up your commit history. With rerere enabled, you can attempt the occasional
merge, resolve the conflicts, then back out of the merge. If you do this continuously, then the final
merge should be easy because rerere can just do everything for you automatically.

This same tactic can be used if you want to keep a branch rebased so you don't have to deal with
the same rebasing conflicts each time you do it. Or if you want to take a branch that you merged
and fixed a bunch of conflicts and then decide to rebase it instead — you likely won't have to do all
the same conflicts again.

Another application of rerere is where you merge a bunch of evolving topic branches together
into a testable head occasionally, as the Git project itself often does. If the tests fail, you can rewind
the merges and re-do them without the topic branch that made the tests fail without having to re-
resolve the conflicts again.

To enable rerere functionality, you simply have to run this config setting:

% git confTig --global rerere.enabled true

git visualized

main

feature

>
J

collab

author, time, commit message, filepaths, file states, ...
https://stackoverflow.com/a/68806436

https://stackoverflow.com/a/68806436

pyjul
* developed by ...

- Pierre Etienne Meunier
- Florent Becker

 command-line tool written in rust
* built upon the theory of patches (like darcs)

theory of patches

« commutativity: independent patches commute
a-b=b-a

« associativity: repositories are sets of patches
(@-b)-c=a-(b-c)

* inversion: patches have a semantic inverse

based on: Pijul: Sane Version Control

https://www.youtube.com/watch?v=o0ooKVikV3c

pijul visualized

main 4® ®—>
collab Q @ C >

pijul applied

$ pijul init
Repository created at /tmp/pijul-test

$ echo "On which channel am I? main" > text.txt
$ pijul add text.txt
Tracked 1 path(s)

$ pijul record -a -m 'initial record'
Hash: KBNAAFTJ30BGOV2TL4DDVO5DSWSJIPSZT4VY6B6WECISYPCL7430QC

$ pijul fork feature

$ pijul channel switch feature
Outputting repository... done!
Reset given paths to last recorded change

$ echo "On which channel am I? feature" > text.txt
$ pijul record -a -m 'record on feature'
Hash: 5URL405LX7D5Y3HOHY62HEOHDSWU4NFWSHFY6EPYZFQIYR7B4J0AC

pijul applied

$ pijul fork collab

$ pijul channel switch collab
Outputting repository... done!
Reset given paths to last recorded change

$ echo "On which channel am I? collab"” > text.txt
$ pijul record -a -m 'record on collab'
Hash: DJID20HJLWLV4NZSRBTHEEV4UDFXYHDPQLJAIYPOA4IXH746DZXPQC

$ pijul channel switch feature
Outputting repository... done!
Reset given paths to last recorded change

$ echo "On which channel am I? feature - I swear!" > text.txt
$ pijul record -a -m 'record on feature, for sure'
Hash: ZSF4ZYMUV5CDWVMGKXSHDWQDYN5BQRMR4X4HCI7EJWWIHDRBOA6QC

$ pijul apply DID20HJILWLV4NZSRBTHEEV4UDFXYHDPQLJAIYPOA4IXH746DZXPQC
There were conflicts:

- Order conflict in "text.txt" starting on line 1

- Order conflict in "text.txt" starting on line 1
Outputting repository... done!

pijul applied

$ pijul channel switch main
Outputting repository... done!
Reset given paths to last recorded change

$ pijul apply
RCCMQI3IX30RSCOZ6VALKUX2XZHLDHNWHXU66FS5L4DPLOAGUDAAC
Outputting repository... done!

not

oJJ]

ofJ

pijul summarized

ul has a simpler model & CLI than git

u

| fixes performance pro

nree-way merge algorit

vlems of darcs

nm per default

no discussions like “merge or rebase workflow?”

web interface for repositories? nest.

https://nest.pijul.com/

git «— pijul

git 1nit
git branch
git switch
git commit
git blame
glt remote
glt push
git pull

pijul
pijul
pijul
pijul
pijul
pijul
pijul
pijul

init

branch

branch switch
record

credit

remote

push

pull

git «— pijul

git 1nit
git branch
git switch
git commit
git blame
glt remote
glt push
git pull

pijul
pijul
pijul
pijul
pijul
pijul
pijul
pijul

1nit

branch

branch switch
record

credit

remote

push

pull

crotophaga sulcirostris
a bird known to do collaborative nest building

https:/ /pijul.org/

:Gracias por su atencion!

https://pijul.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

