RegEx|in der Praxis

Lukas Prokop

BITS Vortragsreihe
27th of Nov 2014

About me

TU Graz student
GDI teaching assistent

I program a lot.
1 ¥ the art of programming,
RegEx is part of it.

2010-2016
2011-2014

Resources

“Mastering Regular
Expressions”
O'Reilly, 2nd edition

Jeffrey E. F. Friedl
http://regex.info/book.html

Mastering G
Regular
Expressions

http://akamaicovers.oreilly.com
/images/9780596528126/1rg.jpg oReLY:

Outline

Intro & Usecases
History
Elements

basic regex
equivalence quiz
advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

Outline

—— Intro & Usecases
History
Elements

basic regex
equivalence quiz
advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

RegEx

“Regular Expressions”

“Rational expressions”

abbr. RegEx
abbr. RegExp

IEEE (“regular expressions”):

ACM DL (“regular expressions”):
Google (“regular expressions”):

Google Scholar (“regular expressions”):
Google (“RegEx”):

1 245 matches

46 381 matches
1910 000 matches
2 060 000 matches
2 880 000 matches

RegEx — wording

T

Can you offer
some RegEx?

/

RegEx — wording

T

Can you offer
some RegEx?

/

DANGER OF
CONFUSION!

Goal

« Specify a set of strings
* But name only one

Only works with text. DSL.

Usecase: Fuzzy string matching

GEDANKEN [from Einstein's term "gedanken-experimenten", such as the standard proof
that E=mc2] adj. An Al project which is written up in grand detail without ever being
implemented to any great extent. Usually perpetrated by people who aren't very good
hackers or find programming distasteful or are just in a hurry. A gedanken thesis is
usually marked by an obvious lack of intuition about what is programmable and what is
not and about what does and does not constitute a clear specification of a program-
related concept such as an algorithm.

— from Hacker's Jargon File

Usecase: Fuzzy string matching

GEDANKEN [from Einstein's term "gedanken-experimenten", such as the standard proof
that E=mc2] adj. An Al project which is written up in grand detail without ever being
implemented to any great extent. Usually perpetrated by people who aren't very good
hackers or find programming distasteful or are just in a hurry. A gedanken thesis is
usually marked by an obvious lack of intuition about what is programmable and what is
not and about what does and does not constitute a clear specification of a program-
related concept such as an algorithm.

— from Hacker's Jargon File

Find all matches of GEDANKEN,
Gedanken and gedanken.

+ to find relevant text passage
« to replace occurrences

Usecase: Text extraction

Given
Donald Knuth says, “I define UNIX as 30
definitions of regular expressions living under
one roof.”

Usecase: Text extraction

Given
Donald Knuth says, “I define UNIX as 30
definitions of regular expressions living under
one roof.”

Extract
the text between quotation marks

Usecase: Text splitting

Comma-separated value (CSV):

"103NNN7";"Prokop";"Lukas";"lukas.prokop@stud...at";"11";"50"

Usecase: Text splitting

Comma-separated value (CSV):

"103NNN7";"Prokop";"Lukas";"lukas.prokop@stud...at";"11";"50"

"103NNN7","Prokop","Lukas","lukas.prokop@stud...at","11","50"

Usecase: Text splitting

Comma-separated value (CSV):

"103NNN7";"Prokop";"Lukas";"lukas.prokop@stud...at";"11";"50"
"103NNN7","Prokop","Lukas","lukas.prokop@stud...at","11","50"

"103NNN7" "Prokop" "Lukas" "lukas.prokop@stud...at" "11" "50"

Usecase: Text splitting

Comma-separated value (CSV):

"103NNN7";"Prokop";"Lukas";"lukas.prokop@stud...at";"11";"50"
"103NNN7","Prokop","Lukas","lukas.prokop@stud...at","11","50"

"103NNN7" "Prokop" "Lukas" "lukas.prokop@stud...at" "11" "50"

Accept various delimiters.

Usecase: Lexing in compilers

int main() {
int a = 3;
printf("Hello World");

Usecase: Lexing in compilers

[AntJmain() ¢
EOHEE,
[printf[Hello World™);
}

string = parameterized token stream

Usecases

e Fuzzy string matching
Text extraction

Text splitting

* Lexing in compilers

Usecases

e Fuzzy string matching
Text extraction

Text splitting

* Lexing in compilers

Remark: Regular expressions are powerful.
But you cannot specify any set of string.

Boils down to?

matching) -———__
text ™
\
extract
part

OO task

-—> optional

Boils down to?

matching) -———__ .
text N
2 parameters V
extract
part
0 parameters
replace ~
~—
part

1 parameter

OO task

-—> optional

Outline

Intro & Usecases

— History
Elements

basic regex
equivalence quiz
advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

History

1956
197_
1986
1987
1991
1997

today

Stephen Kleene (automata theory, TCS)
UNIX guys [ken, dmr] (sed, awk, ...)
Henry Spencer's regex library

Perl

Unicode 1.0.0

PCRE library

native programming language support,
derivatives with common core

Outline

Intro & Usecases
History
—— FElements

basic regex
equivalence quiz
advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

Outline

Intro & Usecases
History
Elements

—> basic regex
equivalence quiz
advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

Xl abcd
X acb
X abc
X ab
M b

Concatenation

ab

abcd
acb
abc

M ab

b

abc

X abcd
X acb
M abc
X ab
X b

Alternation

alb

© O O 0 «©

Bl 5] B B B &

Alternation

alb|c

alb

(9]
O
< O C.blnw

Bl B B B B &

© O O 0 «©

Bl 5] B B B &

Alternation

alb|

alb|c

alb

Quantifiers

Quantifiers

a? a+
]

|Z[a2l |ZI a
aa M aa
X aaa M aaa

X ab X ab

MK MJNRX
D oo oM
B

[N
c

Quantifiers

Quantifiers

a{1,2}

M aa
aaa
[X] aaaa

Quantifiers

a{1,2}

M a
M aa
[X] aaa
[X] aaaa

a{,2}

|

M a

M aa
aaa
aaaa

Quantifiers

a{,2} a{l,}

a{1,2}

Quantifiers

a{2}

a
M aa
aaa
X aaaa

Dot, character lists

Dot, character lists

in general

/ excludes newlines
]

matches one
arbitrary symbol

M ENNX X
o oo

[N
[on

Dot, character lists

[abc]

matches one matches one
arbitrary symbol ofa,borc
x]

M a M a

M b M b

M c M c

X ab ab

Dot, character lists

matches one
arbitrary symbol

M ENNX X
o oo

[N
c

[abc]

matches one
ofa,borc

MRAANXK

QO

(@ I @ V]

o

[a-d]

matches a
range atod

ESENENENEN
o oo oW

What if I told you ...

... that lists are a DSL on their own?

What if I told you ...

... that lists are a DSL on their own?

Character lists

... considered harmful

[abc]

matches one
ofa,borc

MENRNX K
Q. o0 o ®

Character lists

... considered harmful

[abc] [Aabc]

matches one matches one
ofa,borc character
else than

a,borc

MRANXK

Q. 0 o o
K X X B B
a0 o e

Character lists

considered harmful

[-ac]

[Aabc]

[abc]

c O 1 O

R SES RS

©c O O T

B B Bd ¢ B

< O O T

(ISR

Escaping

\[a\-bc?\]«)

matches the string with
only question mark as a
meta character

backslash as universal
escape character

(in all regex grammars
I'know)

[0-9.]

matches one
digit or a dot
character

w

X NN X

c

Shorthand lists

Shorthand lists

X x]

Mo M a
M 6 M b
X 9c M c
X 42 & -

\d

[0-9]

M o
M 6
X 9c
X1 42

Shorthand lists

\w

[A-Za-z0-9_]

XN K
o oW

\s

one of 25
whitespace
characters

M (ab)
M (newline)
M (space)
)

Anchors

... first operators which do not consume anything
... zero-length matches

Abits

starts with

[¥] a bitsequence
M bitsequence
M bits

Anchors

... first operators which do not consume anything
... zero-length matches

Abits bits$

starts with ends with
[¥] a bitsequence X bitsequence
M bitsequence M habits

M bits M bits

Grouping

(alc) (ab)(c)

Xl abc M abc
X ab ¥ ab
¥ ac X ac
M c X c

M a X a

X

(ac)?

Xl abc
¥ ab
M ac
X ¢

Grouping

(alc) (ab)(c)

1 1 2
Xl abc M abc
X ab ¥ ab
¥ ac X ac
M c X c
M a X a
X

(ac)?

Xl abc
¥ ab
M ac
X ¢

Grouping order

((ab)(c))*(def)

Grouping order

((ab)(c))*(def)

Grouping order

((ab)(c))*(def)

2 3 4

1

Groups as scope

Important!
Quantifiers always apply to the last
regex element.

abcd?ef

Quantifier applies only to “d”;
the last letter.

a(bcd)?ef

Quantifier applies to “bcd” group.

Outline

Intro & Usecases
History
Elements

basic regex
—> equivalence quiz
advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

Equivalence quiz

(alblc)

—

Equivalence quiz

(alblc)

—

([abc])

Equivalence quiz

at

1D

Equivalence quiz

at

1D

aa

Equivalence quiz

a{1,3}

—

Equivalence quiz

a{1,3}

—
—
—

aa?a?

Equivalence quiz

(alb)?

—

Equivalence quiz

(alb)?

—

(alb])

Equivalence quiz

a(b(c)?)?

—

Equivalence quiz

a(b(c)?)?

—

a(|blb(c))

Equivalence quiz

I

Equivalence quiz

I o

a{1}

Ready for some
advanced stuff?

Outline

Intro & Usecases
History
Elements

basic regex
equivalence quiz
—> advanced regex

Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

Word boundaries

Special meta character to denote
“beginning of word” or “end of word”.

Semantically is followed / preceeded by
whitespace or punctuation.

Variant 1 (GNU POSIX extension): Variant 2 (PCRE):
\<bits\> \bbits\b

bits_and_bytes

M bits and bytes

M ... without bits. Hence ...

M “Keep those bits!”, he said.
M :bits are the solution!

Character classes

Problem. Character lists are tedious.
Shorthand lists are not flexible.) .
Solution. [['alpha']]

POSIX-only character “classes”. slphabetic characters

(depends on locale)

[:alnum:] [:lower:]

[:alpha:] [[print:]] i
[:ascii:] punct:

[:blank:] [:space:] g }i
[:entrl:] [:upper:] o
[:digit:] [:word:] D
[:graph:] [:xdigit:] B ab

http://www.regular-expressions.info/posixbrackets.html

Character classes

Why are character classes more flexible
than shorthands?

[Aal:digit:]]

one character which is not
an a or a digit

X a
M b
M #
M (newline)
X 4

Scoping

Problem. I want to match “bits” or “bats”.

bilats matches “bi” or “ats”
b(ila)ts matches “bits” or “bats”

Solution. We use groups for scoping.
Okay... fine. But we introduced a new group!

b(ila)ts

Non-grouping matches

[want to group something, I don't want
as a group... finally.

(?:regex)
Hence...

((?:ab)(c))*(def)

2 3

Named groups

Group something and give it a name.

(?P<name>regex)

So we can give meaningful names
instead of integers...

<(?P<tag>[A-Z][A-Z0-9]*)\b[*>]*>.*?</(?P=tag)

tag tag

Lookahead

We want to match only if the following text
matches, but we don't want to consume it.

(?=regex)...(..[0-1])

For input “regex3”, group 1 will be “ex3”.

(?=reg(ex)?)...(..[0-1])

The RegEx engine forgets about the lookahead.
So still only 1 group defined.

Lookahead

We want to match only if the following text
matches, but we don't want to consume it.

(?=regex)...(.[0-1]) ~—— pn o

fixed length
For input “regex3”, group 1 will be “ex3”.

variable length

(?=reg(ex)?)...(..[0-1])~— b

The RegEx engine forgets about the lookahead.
So still only 1 group defined.

Lookbehind

Same for the text before the current position.

(?<=bits)and bytes

Lookarounds summary:

positive lookahead
negative lookahead
positive lookbehind
negative lookbehind

if' Y matching X follows ?=x)Y
if' Y not matching X follows (MX)Y
if Yis preceded by X (?<=X)Y

if'Y is not preceded by X (?<Ix)Y

If-then-else

Define regex as conditional. If true, proceed
with regexA, otherwise proceed with regexB.

(?(id or name)regexA|regexB)

id or name? Pfft, let's use lookaheads ©

(?(?=%PDF-1\.3)oldspec|newspec)

>>> re.search("~([A-Z]\w{1,3}) = (?(1)[~"'\"1|.)", "Var
>>> re.search("~([A-Z]\w{1,3}) = (?(1)[~'\"1|.)", "Var
< sre.SRE_Match object; span=(0, 7), match='Var = 3'>

'hello'")
3)

Backreferences

We matched previously some substring.
We now want the same substring.

Backreferences

We matched previously some substring.
We now want the same substring.

XML:

<tag attrl="valuel" attr2="value2">
content
</tag>

Backreferences

We matched previously some substring.
We now want the same substring.

XML:

<tag attrl="valuel" attr2="value2">
content
</tag>
RegEx:
<tag(\W+=“ [/\II]+II)*>
(.*)
</tag>

Backreferences

We matched previously some substring.
We now want the same substring.

XML:
<tag attrl="valuel" attr2="value2">
content
</tag>

RegEx:
<(\w) (\w="[~"]4") %>

(.%)
</ (\w+)>

Backreferences

We matched previously some substring.
We now want the same substring.

XML:
<tag attrl="valuel" attr2="value2">
content
</tag>
s matches:
—n[Aan "y ok °
<(}WI;(\we=t [+ %> <tag>content</tag>
</ (\w+)> matches:

<tag>content</tagged>

Backreferences

We matched previously some substring.
We now want the same substring.

XML:
<tag attrl="valuel" attr2="value2">
content
</tag>
RegEx:\ \ N matches:
n pon [A]
pgaﬁw <((W*;(" [7*1+%)*> <tag>content</tag>
match y (iW+)>
matches:

<tag>content</tagged>

Backreferences

RegEx:
<([a-z]\w+) (\w+="[""]+")*>
(.*)
</\1>

Matches if and only if the opening and closing tag have
the same name ©

Outline

Intro & Usecases
History
Elements

basic regex
equivalence quiz
advanced regex

— Tools
Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

Tools relying on RegEx

... and also contributing to regex research in some way

ed ex

Vi Java
awk
sed <am W egrep Python
grep emacs/elisp
perl Tel "

lex flex

Outline

Intro & Usecases
History
Elements

basic regex
equivalence quiz
advanced regex

Tools
—— Confusions

matching scope
regular languages
performance
Unicode

B

3a
3b
3c

5a
5b
5¢
5d

RegEx confusions ©

* You are lying. My regex looks different!

« How do I match arbitrary text between two marks?
* How long will the match be?

* Does it match a line or the whole string?

« How do I reference a repeated match in a group?

« What about language theory?

« What about performance?

» What about Unicode?

Confusion #1: same same

... but different

$ grep -rn 'basic strategy' Main/*.txt

Confusion #1: same same

... but different

$ grep -rn 'basic strategy' Main/*.txt

no regex globbing
param

Before running the executable “grep”, the asterisk gets
expanded for all matches where asterisk stands for
some arbitrary string.

grep will never know of the existence of asterisk.

The POSIX standard defines globbing as shell builtin
feature. Did you know “?” stands for one character?

= You can use parentheses to group the wildcard characters and text and to indicate the order of
evaluation. For example, type <(pre)'(ed)> o find "presorted" and "prevented".

* You can se the 1 ideard o searc for an expression and thn replac it herearanged
expression. For example, type (Ashton) (Chris) in the Find what box and 12 1 in the Replace with
o hord il Ashton Chs and replace it with Chris Ashton.

Any single character s7tfinds sat and set.
Any string of characters sd finds sad and started.

The beginning of a word <inter) finds interesting and intercept, but
not spiintered.

The end of a word (in)> finds in and within, but not interesting.
One of the specified characters wiioln finds win and won.

Any single character in this range. [r-tight finds right and sight. Ranges must be
i ing order.

Any single character except the charactersinthe [x-2] {[!a-mck finds tock and tuck, but not tack or
range inside the brackets tick.

Exactly n occurrences of the previous character or {n} fe{2}d finds feed but not fed.
xpression

Who has programmed
more than 10 LOCs Lua?

&
(5

Lua string matching

“Lua patterns can match sequences of characters, ... If you're used
to other languages that have regular expressions to match text,
remember that Lua's pattern matching is not the same: it's more

limited, and has different syntax. ” http://lua-users.org/wiki/PatternsTutorial
> = string.find("abcdefg", 'b..")
2 4
> = string.match("foo 123 bar", '%d%d%d')
123
= string.match("text with an Uppercase letter", '%u')

string.match("abcd", '[bcl[bc]')

= string.match("abcd", '["ad]')

= string.match("123", '[0-9]')

l—‘VC‘VgVCV

Lua string matching

* + 7 asusual. But as many times as possible.
— matches zero or more times, but as few times as possible.

> = string.match("abc", 'a.*')
abc

> = string.match("abc",
a

> = string.match("abc", 'a.-$')
abc

> = string.match("abc", '~.-b'")
ab

a.-')

Who thinks CSS has RegEx?

(5

CSS regex selectors

alhref] a tag with href element
alhref$=.svg] href ends with .svg
alhref*=tugraz] href contains tugraz
alhref®=https] href starts with https

Just selection / matching. No extraction.
No references. No replacements.

Confusion #1: conclusion

Not everything looking like RegEx, is RegEx.

Do not invent your own text matching standard!
Performance is not an excuse.

still pointing out differences?
There are two major RegEx standards:

POSIX: the original UNIX definition
PCRE: additional features by perl (most of what we
talked about in the Advanced chapter)

Confusion #2: delimiters

How do I match arbitrary text between two marks?

Student asks: How to extract everything between two marks?
Donald Knuth says, “I define UNIX as 30
definitions of regular expressions living under
one roof.”

Student's approach: Well... everything between “ and ”

u('*)n

... if you search for a substring.

Confusion #2: delimiters

How do I match arbitrary text between two marks?

Student asks: How to extract everything between two marks?
Donald Knuth says, “I define UNIX as 30
definitions of regular expressions living under
one roof.”

RegEx-master's approach: Everything until the next quotation mark

“1)”

... if you search for a substring.

Confusion #2: delimiters

How do I match arbitrary text between two marks?

Student asks: How to extract everything between two marks?
Donald Knuth says, “I define UNIX as 30
definitions of regular expressions living under
one roof.”

Rationale:
Every regex engine returns longest, leftmost match.
So the engine will pass the second quotation mark and
search for the longest match = performance problem and
will probably match more

Confusion #2: delimiters

How do I match arbitrary text between two marks?

Student asks: How to extract everything between two marks?
Donald Knuth says, “I define UNIX as 30
definitions of regular expressions living under

one roof.”
As python code:
>>> import re
>>> text = 'As "John Doe" said recently, "No one knows"'
>>> re.search('"(.*)"', text).group(1l)
'John Doe" said recently, "No one knows'
>>> re.search('"([~"]*)"', text).group(1l)

'John Doe'

Confusion #2: delimiters

conclusion

Conjecture: .* is almost always
wrong.

Nice approach: Which characters
terminate the string? Ask for it
not to occur. Then ask for it.

u([/\u]*)u

PCRE:

Confusion #3: greediness

How long will the match be?
Longest, leftmost match...
Can we change that?

“Longest” is called “greediness”.

?? match 0-1 times, shortest possible
*? match 0-infinity times, shortest possible
+? match 1-infinity times, shortest possible

Confusion #3: greediness

>>> import re

>>> text = 'As "John Doe" said recently, "No one knows"'
>>> re.search('"(.*?)""', text).group(1l)
'John Doe'

>>> re.search('"([~"]*)"', text).group(1l)
'John Doe'

Confusion #3: greediness

conclusion

Greediness control is important!

python, perl, ...

via special operators

via modifiers
via special flags within regex

Confusion #4

« grep is only meant for line-wise mode.

e perl 6: ~™ and $$ instead of /m

* Everything else is multiline capable
and has a modifier for it.

/./ - Any character except a newline.

/./m- Any character (the m modifier enables multiline mode)
/\w/ - A word character ([a-zA-70-9_1)

/\W/ - A non-word character ([*a-zA-70-9_]). Please take a look at Bug #4044 if
using /\W/ with the /i modifier.

/\d/ - A digit character ([0-9])

/\D/ - A non-digit character ({~0-91)

/\h/ - A hexdigit character ([6-9a-fA-F])

/\H/ - A non-hexdigit character ([~0-9a-fA-F1)

/\s/ - A whitespace character: /[\t\r\n\fl/

/\S/ - A non-whitespace character: /[~ \t\r\n\f1/

Confusion #5: repetition

How do I reference a repeated match in a group?

Input: abc
RegEx: A(*¥)$ RegEx: A()*$
Output: 'abc' Output: 'c'

You cannot extract a variadic number of matches.

You need a programming language outside and individually
match parts.

Start search from an incremental offset and match always the
start of the string.

python: search(pattern, string, flags=0)
search for substring
match(pattern, string, flags=0)
search with implicit A

Confusion #5: repetition

How do I reference a repeated match in a group?

Input: abc
RegEx: A(*¥)$ RegEx: A()*$
Output: 'abc' Output: 'c'

You cannot extract a variadic number of matches.

You need a programming language outside and individually
match parts.

Start search from an incremental offset and match always the
start of the string.

javascript: modifier y

Confusion #6: lang theory

Regular expressions specify
regular languages.

- originally, yes
— nowadays, no

Confusion #6: lang theory

Regular expressions specify
regular languages.

- originally, yes
— nowadays, no

DANGER OF
CONFUSION!

Confusion #6: lang theory

Backreferences are not regular.
Omit backreferences and you can
compute regular expressions
efficiently.

rekursiv aufzahlbar

most state-of-the-art kontext-frei
regex engine:

re2 used by golang

linear time and no backrefs

Confusion #7: Performance

POSIX engines had wrong approaches.
Linear time besides backreferences desirable.
Can be achieved, but pathological regexes exist:

X?X?X?X?X?X?X?X? for input XXXXXXX
awk "/X(.+)*X/{print}" forecho =XX
~(a+)+$ for aaaaaaaaaaaaaaaaX
(X*y*) * for XyXyXyXXXYXYyXYYYXXXYX

1053 peregrep 4.1/ PCRE 6.4
Ruby 1.84

s Python 2.4.4cl

Perl 5.8.7

100 ms o

10ms

time

_ awk 20050424
1 ms e
GNU grep 2.5.1
Thompson NFA
_— GNUawk3.15

100 us

10us

Confusion #7: Performance

conclusion

* Avoid optional element following
optional element

« Especially if they share structure

* Things are getting better. Faster
backref-less engines coming!

« In the meanwhile: Don't let user specify
regular expression!

Confusion #8: Unicode

POSIX regex — one char = one byte
Unicode? — one char = one unicode point

Done. Right?

We decode string and encode it to charset required by
engine. Engine computes, returns result and we decode
& encode it back. Normalization (etc.) is not part of
regex discussion, right?

Confusion #8: Unicode

POSIX regex — one char = one byte
Unicode? — one char = one unicode point

Right, but the point are character classes. Which
characters should we be able to denote in character
classes? From which writing systems? We need
convenient classes. Much research to do.

selection by keyword

\p{Hiragana} <—
\p{Katakana}

b licii
\X{1F4AQ} < univodb point

Confusion #8: Unicode

conclusion

POSIX regex — one char = one byte
Unicode? — one char = one unicode point

This is not only a technical issue. This is linguistically
interesting.

Performance should not be a problem as far as I can see.
Character classes can be implemented by membership
tests and this can be done efficiently.

Further reading - state of the art

Russ Cox, Google Code Search, Go prog. lang.

http://swtch.com/~rsc/regexp/
“Implementing regular expressions”

Unicode Consortium, TR 18

http://www.unicode.org/reports/tr18/
“Unicode Regular Expressions”

Nick Patch, unicode & regex
https://speakerdeck.com/patch/unicode-regular-
expression-engines
“Unicode Regular Expression Engines”

Finally... 7

RegEx is a nice tool for text processing.
RegEx needs a little bit of theory and
practice and you can handle it.

What's your opinion on RegEx?
Difficult question: Should we use RegEx

to show user which input in a textfield is
accepted?

Thanks

Please stand back, we know RegEx!

Thanks to you and the BITS!

http://lukas-prokop.at/talks/regex_in_practice/

